Identifying related offences in a criminal investigation is an important goal for crime analysts. This can deliver evidence that can assist in apprehension of suspects and better attribution of past crimes. The use of pattern based approaches has the potential to assist crime experts in discovering new patterns of criminal activity. Hence, research in this area continues. This paper revisits frequent pattern growth models for crime pattern mining. Frequent pattern (FP) based approaches, such as the FP-Growth model, have been identified to be more effective than techniques proposed in the past, such as Apriori. Therefore, this research proposes a descriptive statistical approach, based on a quartile (floor-ceil) function, for the minimum support threshold (MST) choice selection, which is a major decision step in the pruning phase of the Traditional FP-Growth (TFPG) model. Our revised frequent pattern growth (RFPG) model further proposes a Pattern-pattern (P p ) paradigm to identify tuples of subtle crime pattern(s) sequences or recurring trends in criminal activity. We present empirical results in order to guide intended audience about future decisions or research regarding this model. Results indicate that RFPG is more promising than TFPG and will always ensure the utilisation of a reasonable percentage of the crime dataset, in order to produce more reliable and sufficiently informative patterns or trends. c 2015 Isafiade et al. Published by Elsevier B.V. Selection and/or peer-review under responsibility of ITQM2015.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.