Salt stress limits crop yield and sustainable agriculture in most arid and semiarid regions of the world. Arbuscular mycorrhizal fungi (AMF) are considered bio-ameliorators of soil salinity tolerance in plants. In evaluating AMF as significant predictors of mycorrhizal ecology, precise quantifiable changes in plant biomass and nutrient uptake under salt stress are crucial factors. Therefore, the objective of the present study was to analyze the magnitude of the effects of AMF inoculation on growth and nutrient uptake of plants under salt stress through meta-analyses. For this, data were compared in the context of mycorrhizal host plant species, plant family and functional group, herbaceous vs. woody plants, annual vs. perennial plants, and the level of salinity across 43 studies. Results indicate that, under saline conditions, AMF inoculation significantly increased total, shoot, and root biomass as well as phosphorous (P), nitrogen (N), and potassium (K) uptake. Activities of the antioxidant enzymes superoxide dismutase, catalase, peroxidase, and ascorbate peroxidase also increased significantly in mycorrhizal compared to nonmycorrhizal plants growing under salt stress. In addition, sodium (Na) uptake decreased significantly in mycorrhizal plants, while changes in proline accumulation were not significant. Across most subsets of the data analysis, identities of AMF (Glomus fasciculatum) and host plants (Acacia nilotica, herbs, woody and perennial) were found to be essential in understanding plant responses to salinity stress. For the analyzed dataset, it is concluded that under salt stress, mycorrhizal plants have extensive root traits and mycorrhizal morphological traits which help the uptake of more P and K, together with the enhanced production of antioxidant enzymes resulting in salt stress alleviation and increased plant biomass.
BackgroundThe present study was conducted to investigate the serological survey of Toxoplasma antibodies in local.horses from three major regions: a neighbourhood of a city in the North (Sidi Thabet), a neighbourhood of a city on the coast (Monastir) and a neighbourhood of a city in the middle (Battan) of Tunisia (North of Africa).MethodsA total of 158 serum samples were obtained from clinically healthy horses which consisted of 111 (32 female, 79 male) 2-10 years old and 47 (11 female, 36 male) older than 10 years. All of the horses were tested for antibodies to T. gondii using the Modified Agglutination Test (MAT).ResultsAccording to MAT results, antibodies to T. gondii were found in 28 (17.7%) of 158 sera with the titers of 1:20 in 20 horses, 1:40 in 1 horse, 1:80 in 2 horses, 1:160 in 2 horses, 1:320 in 1 horse and ≥1:640 in 2 horses. Anti-T. gondii antibodies were found in 18 (16.2%) of 111 horses (2-10 years old) and 10 (21.2%) of 47 horses (older than 10 years old). Six (13.9%) out of 43 female had anti-toxoplasma antibodies and 22 (19.1%) from 115 males remained positive.ConclusionStatistically significant differences in age groups and genders were observed between the seropositive and seronegative horses using the Chi square X(2) test. Other statistical correlation was also reported concerning horse breed.
Here, we determined the Toxoplasma gondii genotype in amniotic fluid, placenta, and cerebrospinal fluid samples from 14 congenital toxoplasmosis cases in Tunisia, North Africa. Direct genotypic characterization of T. gondii strains was performed by polymerase chain reaction (PCR) amplification of six genetic markers (3'SAG2, 5' SAG2, SAG3, BTUB, GRA6, and APICO) and thereafter, was analyzed by restriction fragment-length polymorphism (RFLP). Samples were sequenced to resolve strain type whenever there were unclear enzyme digestion results. Multilocus analysis revealed that only one specimen harbored the type I allele in all studied loci, whereas the 13 others gave mixed genotype results with different alleles at different markers. Seven specimens produced RFLP profile of the recombinant strains I/III, and three produced a profile of I/II recombinant strains. The last three specimens produced complex digestion patterns. In these cases, sequence analysis revealed double peaks at known polymorphic sites, indicating the presence of multiple alleles.
Pediatric diarrhea is a common cause of death among children under 5 years of age. In the current study, we investigated the frequency of intestinal parasites among 580 pediatric patients with chronic diarrhea. Parasitic protozoa (all species combined) were detected by molecular tools in 22.9% of the children and the most common parasite was Cryptosporidium spp. (15.1%). Blastocystis hominis was detected in 4.7%, Dientamoeba fragilis in 4%, Giardia duodenalis in 1.7%, and Entamoeba histolytica in 0.17%. Protozoan infections were observed among all regional groups, but prevalence was highest among Qatari subjects and during the winter season. Typing of Cryptosporidium spp. revealed a predominance of Cryptosporidium parvum in 92% of cases with mostly the IIdA20G1 subtype. Subtypes IIdA19G2, IIdA18G2, IIdA18G1, IIdA17G1, IIdA16G1, and IIdA14G1 were also detected. For Cryptosporidium hominis, IbA10G2 and IbA9G3 subtypes were identified. This study provides supplementary information for implementing prevention and control strategies to reduce the burden of these pediatric protozoan infections. Further analyses are required to better understand the local epidemiology and transmission of Cryptosporidium spp. in Qatar.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.