Finding modules, or clusters, in networks currently attracts much attention in several domains. The most studied criterion for doing so, due to Newman and Girvan [Phys. Rev. E 69, 026113 (2004)], is modularity maximization. Many heuristics have been proposed for maximizing modularity and yield rapidly near optimal solution or sometimes optimal ones but without a guarantee of optimality. There are few exact algorithms, prominent among which is a paper by Xu [Eur. Phys. J. B 60, 231 (2007)]. Modularity maximization can also be expressed as a clique partitioning problem and the row generation algorithm of Grötschel and Wakabayashi [Math. Program. 45, 59 (1989)] applied. We propose to extend both of these algorithms using the powerful column generation methods for linear and non linear integer programming. Performance of the four resulting algorithms is compared on problems from the literature. Instances with up to 512 entities are solved exactly. Moreover, the computing time of previously solved problems are reduced substantially.
Detecting and solving aircraft conflicts, which occur when aircraft sharing the same airspace are too close to each other according to their predicted trajectories, is a crucial problem in Air Traffic Management. We focus on mixed-integer optimization models based on speed regulation. We first solve the problem to global optimality by means of an exact solver. The problem being very difficult to solve, we also propose a heuristic procedure where the problem is decomposed and it is locally exactly solved. Computational results show that the proposed approach provides satisfactory results.
International audienceMathematical programming is a language for describing optimization problems; it is based on parameters, decision variables, objective function(s) subject to various types of constraints. The present treatment is concerned with the case when objective(s) and constraints are algebraic mathematical expressions of the parameters and decision variables, and therefore excludes optimization of black-box functions. A reformulation of a mathematical program P is a mathematical program Q obtained from P via symbolic transformations applied to the sets of variables, objectives and constraints. We present a survey of existing reformulations interpreted along these lines, some example applications, and describe the implementation of a software framework for reformulation and optimization
Abstract. The search tree size of the spatial Branch-and-Bound algorithm for Mixed-Integer Nonlinear Programming depends on many factors, one of which is the width of the variable ranges at every tree node. A range reduction technique often employed is called Feasibility Based Bounds Tightening, which is known to be practically fast, and is thus deployed at every node of the search tree. From time to time, however, this technique fails to converge to its limit point in finite time, thereby slowing the whole Branch-and-Bound search considerably. In this paper we propose a polynomial time method, based on solving a linear program, for computing the limit point of the Feasibility Based Bounds Tightening algorithm applied to linear equality and inequality constraints.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.