Abstract. We describe a metalanguage MMML, which makes explicit the order of evaluation (in the spirit of monadic metalanguages) and the staging of computations (as in languages for multi-level bindingtime analysis). The main contribution of the paper is an operational semantics which is sufficiently detailed for analyzing subtle aspects of multi-stage programming, but also intuitive enough to serve as a reference semantics. For instance, the separation of computational types from code types, makes clear the distinction between a computation for generating code and the generated code, and provides a basis for multi-lingual extensions, where a variety of programming languages (aka monads) coexist. The operational semantics consists of two parts: local (semantics preserving) simplification rules, and computation steps executed in a deterministic order (because they may have side-effects). We focus on the computational aspects, thus we adopt a simple type system, that can detect usual type errors, but not the unresolved link errors. Because of its explicit annotations, MMML is suitable as an intermediate language.
Building on our previous work, we present a simple module calculus where execution steps of a module component can be interleaved with reconfiguration steps (that is, reductions at the module level), and where execution can partly control precedence between these reconfiguration steps. This is achieved by means of a low priority link operator which is only performed when a certain component, which has not been linked yet, is both available and really needed for execution to proceed, otherwise precedence is given to the outer operators. We illustrate the expressive power of this mechanism by a number of examples. We ensure soundness by combining a static type system, which prevents errors in applying module operators, and a dynamic check which raises a linkage error if the running program needs a component which cannot be provided by reconfiguration steps. In particular no linkage errors can be raised if all components are potentially available.
Modern programming environments such as those of Java and C# support dynamic loading of software fragments. More in general, we can expect that in the future systems will support more and more forms of interleaving of reconfiguration steps and standard execution steps, where the software fragments composing a program are dynamically changed and/or combined on demand and in different ways. However, existing kernel calculi providing formal foundations for module systems are based on a static view of module manipulation, in the sense that open code fragments can be flexibly combined together, but all module operators must be performed once for all before starting execution of a program, that is, evaluation of a module component. The definition of clean and powerful module calculi supporting lazy module operators, that is, operators which can be performed after the selection of some module component, is still an open problem. Here, we provide an example in this direction (the first at our knowledge), defining an extension of the Calculus of Module Systems [5] where module operators can be performed at execution time and, in particular, are executed on demand, that is, only when needed by the executing program. In other words, execution steps, if possible, take the precedence over reconfiguration steps. The type system of the calculus, which is proved to be sound, relies on a dependency analysis which ensures that execution will never try to access module components which cannot become available by performing reconfiguration steps.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.