The increase of the elongational viscosity of recycled poly(ethylene terephthalate) (PET) is investigated with the aim of producing closed‐cell foams by means of a cost‐effective reactive extrusion technique. A recycled PET grade containing controlled contamination levels of polyvinyl chloride (PVC) and poylethylene (PE) is selected, and compared with virgin bottle‐grade PET as a reference. Reactive processing with a tetrafunctional epoxy additive induces randomly branched molecules with a lower degree of branching in recycled PET than in virgin PET, as shown by a molecular structure analysis. The corresponding increase in elongational viscosity is related to foaming experiments performed using supercritical CO2 in a pressurized vessel. Observations of foam microstructures reveal that modified virgin PET forms closed‐cell structures under a large variety of foaming conditions, as opposed to unmodified virgin and recycled PET, which collapse as a result of insufficient elongational resistance. Closed‐cell foams are also obtained using modified recycled PET, providing that the temperature at which the pressure is released is lowered to 260°. Recycling of PET into closed‐cell foams is thus achieved, although the processing window is slightly reduced compared to virgin PET.
The use of a tetrafunctional epoxy‐based additive to modify the molecular structure of poly(ethylene terephthalate) (PET) was investigated with the aim of producing PET foams by an extrusion process. The molecular structure analysis and shear and elongation rheological characterization showed that branched PET is obtained for 0.2, 0.3 and 0.4 wt% of a tetrafunctional epoxy additive. Gel permeation chromatography (GPC) analysis led to the conclusion that a randomly branched structure is obtained, the structure being independent of the modifier concentration. The evolution of shear and extensional behavior as a function of molecular weight (Mw), degree of branching, and molecular weight distribution (MWD) were studied, and it is shown that an increase in the degree of branching and Mw and the broadening of the MWD induce an increase in Newtonian viscosity, relaxation time, flow activation energy and transient extensional viscosity, while the shear thinning onset and the Hencky strain at the fiber break decrease markedly.
A reactive process is developed to extend the recycling of poly(ethylene terephthalate) (PET) into high-value applications, in particular into foam core sandwich structures. To achieve a cellular structure, a high extensional viscosity is required to prevent foam collapse during the final stabilisation phase of the extrusion process. This is obtained by reacting PET with tetrafunctional epoxy-based modifiers, which induce branching and a certain amount of crosslinking. The modification of the chemical architecture leads to a 50-fold increase in the apparent extensional viscosity. With these modified materials closed-cell foams are obtained using carbon dioxide as a foaming agent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.