Although traditional medicines have been used for thousands of years, for most such medicines neither the active component nor their molecular targets have been very well identified. Curcumin, a yellow component of turmeric or curry powder, however, is an exception. Although inhibitors of cyclooxygenase-2, HER2, tumor necrosis factor, EGFR, Bcr-abl, proteosome, and vascular endothelial cell growth factor have been approved for human use by the United States Food and Drug Administration (FDA), curcumin as a single agent can down-regulate all these targets. Curcumin can also activate apoptosis, down-regulate cell survival gene products, and up-regulate p53, p21, and p27. Although curcumin is poorly absorbed after ingestion, multiple studies have suggested that even low levels of physiologically achievable concentrations of curcumin may be sufficient for its chemopreventive and chemotherapeutic activity. Thus, curcumin regulates multiple targets (multitargeted therapy), which is needed for treatment of most diseases, and it is inexpensive and has been found to be safe in human clinical trials. The present article reviews the key molecular mechanisms of curcumin action and compares this to some of the single-targeted therapies currently available for human cancer.
CXC chemokine receptor 4 (CXCR4), initially linked with leukocyte trafficking, is now known to be expressed in various tumors including breast, ovary, prostate, gastrointestinal, head and neck, bladder, brain, and melanoma. This receptor mediates homing of tumor cells to specific organs that express the ligand CXCL12 for this receptor. Thus, agents that can down-regulate CXCR4 expression have potential against cancer metastasis. In this study, we report the identification of zerumbone, a component of subtropical ginger (Zingiber zerumbet), as a regulator of CXCR4 expression. This sesquiterpene down-regulated the expression of CXCR4 on HER2-overexpressing breast cancer cells in a dose-and time-dependent manner. The decrease in CXCR4 by zerumbone was found to be not cell type specific as its expression was abrogated in leukemic, skin, kidney, lung, and pancreatic cancer cell lines. The down-regulation of CXCR4 was not due to proteolytic degradation but rather to transcriptional regulation, as indicated by down-regulation of mRNA expression, inhibition of nuclear factor-KB activity, and suppression of chromatin immunoprecipitation activity. Suppression of CXCR4 expression by zerumbone correlated with the inhibition of CXCL12-induced invasion of both breast and pancreatic cancer cells. An analogue of zerumbone, A-humulene, which lacks the carbonyl group, was found to be inactive in inducing CXCR4 downregulation. Overall, our results show that zerumbone is a novel inhibitor of CXCR4 expression and thus has a potential in the suppression of cancer metastasis. [Cancer Res 2008;68(21):8938-44]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.