Science is addressing global societal challenges, and due to limitations in research financing, scientists are turning to the public at large to jointly tackle specific environmental issues. Citizens are therefore increasingly involved in monitoring programs, appointed as citizen scientists with potential to delivering key data at near to no cost to address environmental challenges, therein fostering scientific knowledge and advising policy- and decision-makers. One of the first and most successful examples of marine citizen science in the Mediterranean is represented by the integrative and collaborative implementation of several jellyfish-spotting campaigns in Italy, Spain, Malta, and Tunisia starting in 2009. Altogether, in terms of time coverage, geographic extent, and number of citizen records, these represent the most effective marine citizen science campaigns thus far implemented in the Mediterranean Sea. Here, we analyzed a collective database merging records over the above four countries, featuring more than 100,000 records containing almost 25,000 observations of jellyfish specimens collected over a period of 3 to 7 years (from 2009 to 2015) by citizen scientists participating in any of the national citizen science programs included in this analysis. Such a wide citizen science exercise demonstrates a valuable and cost-effective tool to understanding ecological drivers of jellyfish proliferation over the Western and Central Mediterranean basins, as well as a powerful contribution to developing tailored adaptation and management strategies; mitigating jellyfish impacts on human activities in coastal zones; and supporting implementation of marine spatial planning, Blue Growth, and conservation strategies.
Understanding the life cycle strategies and predatory impact of alien jellyfish species is critical to mitigate the impact these organisms may have on local populations, biodiversity, and ultimately on the functioning of food webs. In the Mediterranean Sea, little is known about the dynamics of alien jellyfish, although this area is a biodiversity hotspot and one of the most threatened by an increasing number of alien jellyfish. Here, we investigated the population dynamics and predatory impact of a non-indigenous scyphomedusa, Aurelia solida Browne 1905, in the Bizerte Lagoon, Tunisia. The study was based on a bimonthly survey performed over two consecutive years, from November 2012 to August 2014. Field observations showed that the planktonic phase of A. solida occurs from winter to early summer. Prey composition was investigated by means of gut content and field zooplankton analyses. Calanoid copepods, mollusc larvae and larvaceans represented the main food items of A. solida. To determine the jellyfish feeding rate and their predatory impact on zooplankton populations, the digestion time for zooplankton prey was assessed at three different temperatures: 13, 18 and 23 °C in laboratory conditions, corresponding to the average range of temperatures encountered by A. solida in the Bizerte Lagoon. We found that A. solida consumed 0.5–22.5% and 0.02–37.3% of the daily zooplankton standing stock in 2013 and 2014, respectively. These results indicate a non-negligible but restricted seasonal grazing impact on some mesozooplankton groups, explained by the relatively short lifespan of the medusa stage (5–6 months).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.