Neutrophils are primary host innate immune cells defending against pathogens. One proposed mechanism by which neutrophils prevent the spread of pathogens is NETosis: the extrusion of cellular DNA resulting in neutrophil extracellular traps (NETs). The protease neutrophil elastase (NE) has been implicated in the formation of NETs through proteolysis of nuclear proteins leading to chromatin decondensation. In addition to NE, neutrophils contain three other serine proteases that could compensate if the activity of NE was neutralized. However, whether they do play such a role is unknown. Thus, we deployed recently described specific inhibitors against all four of the neutrophil serine proteases (NSPs). Using specific antibodies to the NSPs along with our labeled inhibitors, we show that catalytic activity of these enzymes is not required for the formation of NETs. Moreover, the NSPs that decorate NETs are in an inactive conformation and thus cannot participate in further catalytic events. These results indicate that NSPs play no role in either NETosis or arming NETs with proteolytic activity.
Pyroptosis is the caspase-dependent inflammatory cell death mechanism that underpins the innate immune response against pathogens and is dysregulated in inflammatory disorders. Pyroptosis occurs via two pathways: the canonical pathway signaled by caspase-1 and the noncanonical pathway regulated by mouse caspase-11 and human caspases-4/5. All inflammatory caspases activate the pyroptosis effector protein gasdermin D, but caspase-1 mostly activates the inflammatory cytokine precursors pro-interleukin-18 and pro-interleukin-1β (pro-IL18/pro-IL1β). Here, in vitro cleavage assays with recombinant proteins confirmed that caspase-11 prefers cleaving gasdermin D over the pro-ILs. However, we found that caspase-11 recognizes protein substrates through a mechanism that is different from that of most caspases. Results of kinetics analysis with synthetic fluorogenic peptides indicated that P1’–P4’—the C-terminal gasdermin D region adjacent to the cleavage site—influences gasdermin D recognition by caspase-11. Furthermore, introducing the gasdermin D P1’–P4’ region into pro-IL18 enhanced catalysis by caspase-11 to levels comparable to that of gasdermin D cleavage. Pro-IL1β cleavage was only moderately enhanced by similar substitutions. We conclude that caspase-11 specificity is mediated by the P1’–P4’ region in its substrate gasdermin D, and similar experiments confirmed that the substrate specificities of the human orthologs of caspase-11—i.e. caspases-4 and -5—are ruled by the same mechanism. We propose that P1’–P4’-based inhibitors could be exploited to specifically target inflammatory caspases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.