Highlights d Cities possess a consistent ''core'' set of non-human microbes d Urban microbiomes echo important features of cities and city-life d Antimicrobial resistance genes are widespread in cities d Cities contain many novel bacterial and viral species
SignificanceBatrachochytrium dendrobatidis [Bd] is one of the most devastating wildlife pathogens ever documented. Most surveys for Bd report only the presence/absence of the pathogen. However, Bd has distinct genetic lineages that vary in geographic extent and virulence, thus reporting Bd presence alone is not particularly informative. Our study uses a custom method for genotyping degraded Bd DNA samples, such as those nondestructively collected from live animal or museum specimen skin swabs, and presents the discovery of a divergent lineage of Bd—BdASIA3. This study advances our understanding of the evolutionary origins of Bd, highlights areas of the world where Bd lineages are coming into contact, and opens the door to affordable, rapid genetic monitoring of this pathogen.
Amphibian populations are declining worldwide, particularly in tropical regions where amphibian diversity is highest. Pollutants, including agricultural pesticides, have been identified as a potential contributor to decline, yet toxicological studies of tropical amphibians are very rare. The present study assesses toxic effects on amphibians of 10 commonly used commercial pesticides in tropical agriculture using 2 approaches. First, the authors conducted 8-d toxicity assays with formulations of each pesticide using individually reared red-eyed tree frog (Agalychnis callidryas) tadpoles. Second, they conducted a review of available data for the lethal concentration to kill 50% of test animals from the US Environmental Protection Agency's ECOTOX database to allow comparison with their findings. Lethal concentration estimates from the assays ranged over several orders of magnitude. The nematicides terbufos and ethoprophos and the fungicide chlorothalonil were very highly toxic, with evident effects within an order of magnitude of environmental concentrations. Acute toxicity assays and meta-analysis show that nematicides and fungicides are generally more toxic than herbicides yet receive far less research attention than less toxic herbicides. Given that the tropics have a high diversity of amphibians, the findings emphasize the need for research into the effects of commonly used pesticides in tropical countries and should help guide future ecotoxicological research in tropical regions.
Amphibian populations are vanishing worldwide. Declines and extinctions of many populations have been attributed to chytridiomycosis, a disease induced by the pathogenic fungus Batrachochytrium dendrobatidis (Bd). In Africa, however, changes in amphibian assemblages were typically attributed to habitat change. We conducted a retrospective study utilizing field surveys from 2004–2012 of the anuran faunas on two mountains in western Cameroon, a hotspot of African amphibian diversity. The number of species detected was negatively influenced by year, habitat degradation, and elevation, and we detected a decline of certain species. Because another study in this region revealed an emergence of Bd in 2008, we screened additional recent field-collected samples and also pre-decline preserved museum specimens for the presence of Bd supporting emergence before 2008. When comparing the years before and after Bd detection, we found significantly diminished frog species richness and abundance on both mountains after Bd emergence. Our analyses suggest that this may be the first disease-driven community-level decline in anuran biodiversity in Central Africa. The disappearance of several species known to tolerate habitat degradation, and a trend of stronger declines at higher elevations, are consistent with Bd-induced declines in other regions. Not all species decreased; populations of some species remained constant, and others increased after the emergence of Bd. This variation might be explained by species-specific differences in infection probability. Increased habitat protection and Bd-mitigation strategies are needed for sustaining diverse amphibian communities such as those on Mt. Manengouba, which contains nearly half of Cameroon’s frog diversity.
IntroductionEmerging infectious diseases are increasingly recognized as a global threat to wildlife. Pandemics in amphibians, caused by the fungal pathogen Batrachochytrium dendrobatidis (Bd), have resulted in biodiversity loss at a global scale. Genomic data suggest a complex evolutionary history of Bd lineages that vary in pathogenicity. Africa harbors a significant proportion of global amphibian biodiversity, and multiple Bd lineages are known to occur there; yet, despite the decline of many host species, there are currently no described Bd-epizootics. Here, we describe the historical and recent biogeographical spread of Bd and assess its risk to amphibians across the continent of Africa.MethodsWe provide a 165-year view of host-pathogen interactions by (i) employing a Bd assay to test 4,623 specimens (collected 1908–2013); (ii) compiling 12,297 published Bd records (collected 1852–2017); (iii) comparing the frequency of Bd-infected amphibians through time by both country and region; (iv) genotyping Bd lineages; (v) histologically identifying evidence of chytridiomycosis, and (vi) using a habitat suitability model to assess future Bd risk.ResultsWe found a pattern of Bd emergence beginning largely at the turn of the century. From 1852–1999, we found low Bd prevalence (3.2% overall) and limited geographic spread, but after 2000 we documented a sharp increase in prevalence (18.7% overall), wider geographic spread, and multiple Bd lineages that may be responsible for emergence in different regions. We found that Bd risk to amphibians was highest in much of eastern, central, and western Africa.DiscussionOur study documents a largely overlooked yet significant increase in a fungal pathogen that could pose a threat to amphibians across an entire continent. We emphasize the need to bridge historical and contemporary datasets to better describe and predict host-pathogen dynamics over larger temporal scales.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.