Sexual selection is an intense evolutionary force, which operates through competition for the access to breeding resources. There are many cases where male copulatory success is highly asymmetric, and few males are able to sire most females. Two main hypotheses were proposed to explain this asymmetry: “female choice” and “male dominance”. The literature reports contrasting results. This variability may reflect actual differences among studied populations, but it may also be generated by methodological differences and statistical shortcomings in data analysis. A review of the statistical methods used so far in lek studies, shows a prevalence of Linear Models (LM) and Generalized Linear Models (GLM) which may be affected by problems in inferring cause-effect relationships; multi-collinearity among explanatory variables and erroneous handling of non-normal and non-continuous distributions of the response variable. In lek breeding, selective pressure is maximal, because large numbers of males and females congregate in small arenas. We used a dataset on lekking fallow deer (Dama dama), to contrast the methods and procedures employed so far, and we propose a novel approach based on Generalized Structural Equations Models (GSEMs). GSEMs combine the power and flexibility of both SEM and GLM in a unified modeling framework. We showed that LMs fail to identify several important predictors of male copulatory success and yields very imprecise parameter estimates. Minor variations in data transformation yield wide changes in results and the method appears unreliable. GLMs improved the analysis, but GSEMs provided better results, because the use of latent variables decreases the impact of measurement errors. Using GSEMs, we were able to test contrasting hypotheses and calculate both direct and indirect effects, and we reached a high precision of the estimates, which implies a high predictive ability. In synthesis, we recommend the use of GSEMs in studies on lekking behaviour, and we provide guidelines to implement these models.
Most studies on ungulate reproduction have focused on the covariates of male reproductive success, while there is much less information on female tactics of mate choice. The aim of this work is to fill this gap and to assess condition-dependent variations in female tactics in a lekking fallow deer (Dama dama) population. in particular, we investigated three indirect selection mechanisms: i) aggregation: when females join an already formed female group; ii) copying: when females copy the mate choice of other females and iii) territory choice: when females select a territory where many copulations had previously occurred. our results show that female fallow deer, which are less experienced (younger) and/or incur higher travel costs (home range far from the lek), adopt indirect forms of mate selection more often than older females or females residing near the lek, respectively. compared to adults, younger females remained longer in the lek (almost three times) and in male territories, returning to the lek after copulation. However, despite the time spent at the lek, younger females were not able to select the highest-rank males, and relied on territory choice more often than older females. farther does visited the lek less frequently (farthest females only once) and arrived on average 5 days later than closer females (which performed up to 7 visits), but they were seen more often within female groups (aggregation). We did not find a different amount of copying in younger or in farther females. our results contribute to advance our understanding of female behaviours in ungulate leks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.