Many calls to improve science education in college and university settings have focused on improving instructor pedagogy. Meanwhile, science education at the K-12 level is undergoing significant changes as a result of the emphasis on scientific and engineering practices, crosscutting concepts, and disciplinary core ideas. This framework of “three-dimensional learning” is based on the literature about how people learn science and how we can help students put their knowledge to use. Recently, similar changes are underway in higher education by incorporating three-dimensional learning into college science courses. As these transformations move forward, it will become important to assess three-dimensional learning both to align assessments with the learning environment, and to assess the extent of the transformations. In this paper we introduce the Three-Dimensional Learning Assessment Protocol (3D-LAP), which is designed to characterize and support the development of assessment tasks in biology, chemistry, and physics that align with transformation efforts. We describe the development process used by our interdisciplinary team, discuss the validity and reliability of the protocol, and provide evidence that the protocol can distinguish between assessments that have the potential to elicit evidence of three-dimensional learning and those that do not.
Acid−base chemistry is central to a wide range of reactions. If students are able to understand how and why acid− base reactions occur, it should provide a basis for reasoning about a host of other reactions. Here, we report the development of a method to characterize student reasoning about acid−base reactions based on their description of what happens during the reaction, how it happens, and why it happens. We show that we can reliably place student responses into categories that reflect the model of acid−base reactivity used and whether the students invoke an electrostatic causal argument. However, the quality of student responses is highly dependent on the structure of the task prompt, which must be structured to provide students with enough information for them to understand what is needed. In general, students who construct responses that invoke a causal mechanistic Lewis model are more likely to draw appropriate curved arrow reaction mechanisms.
Because Lewis structures provide a direct connection between molecular structure and properties, the ability to construct and use them is an integral component of many chemistry courses. Although a great deal of time and effort has been dedicated to development of “foolproof” rules, students still have problems with the skill. What is more, many students fail to connect the skill with the reasons for learning it. In fact, it appears that conventional instructional practices involved in teaching Lewis structures are in direct conflict with much of what we know about how people learn. In support of this assertion, we present the results of a mixed-methods study designed to investigate how students at all levels draw Lewis structures, and how students perceive the utility of Lewis structures. We offer suggestions for alternative methods of developing this skill in order to provide students with an approach to meaningful learning.
The connection between the molecular-level structure of a substance and its macroscopic properties is a fundamental concept in chemistry. Students in college-level general and organic chemistry courses were interviewed to investigate how they used structure-property relationships to predict properties such as melting and boiling points. Although student difficulties in this area are well documented, they are usually classified as individual misconceptions. However our studies showed that student problems appear to arise from a complex interplay of problems involving a number of different sources: (1) models of phases/ phase change, (2) use of representations, (3) language and terminology, and (4) use of heuristics in student reasoning. No two students used the same sets of ideas to perform the task at hand, and while we did see some recurrences of a single idea or heuristic, the ways that students combined them were different. We believe that, at least for high-level complex tasks such as determining structure-property relationships, student understanding is best understood as a set of loosely connected ideas, skills, and heuristics that are not well integrated. These are not single "misconceptions" that can be reconstructed in isolation. What is clear is that students who have done everything we ask of them, and who have earned high grades in chemistry courses are unable to address a core concept in chemistry. Typical assessments often mask the difficulties that students have with core concepts, since many students may correctly answer a question using heuristics, but have faulty reasoning. We recommend that instruction should include a scaffolded progression of ideas, and opportunities to construct and connect their understanding that will allow students to construct a more coherent framework from which to make predictions about the behavior of matter. # 2013 Wiley Periodicals, Inc. J Res Sci Teach 50: 2013
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.