Aims: Concentration of pathogens diluted in large volumes of water is necessary for their detection. An automated concentration system placed online in drinking water distribution systems would facilitate detection and mitigate the risk to public health.
Methods and Results: A prototype concentrator based on dead‐end hollow fibre ultrafiltration was used to concentrate Bacillus atrophaeus spores directly from tap water. Backflush was used to recover accumulated particulates for analysis. In field tests conducted on a water utility distribution system, 3·2 × 104–1·4 × 106 CFU ml−1 (6·1 × 106–3·0 × 108 CFU) were recovered from the filter when 2·9 × 107–1·0 × 109 CFU were spiked into the system. Per cent recovery ranged from 21% to 68% for flow volumes of 15–21 l. Tests using spore influent levels <10 CFU l−1 (spike < 1000 CFU) yielded 23–40% recovery for volumes >100 l.
Conclusions: B. atrophaeus spores at levels <10 CFU l−1 were concentrated directly from tap water using an automated dead‐end hollow‐fibre ultrafiltration system.
Significance and Impact of the Study: The prototype concentrator represents a critical step towards an autonomous system that could be installed in drinking water distribution lines or other critical water lines to facilitate monitoring. Recovered samples can be analysed using standard or rapid biosensor methods.
An automated concentration system (ACS) based on dead-end ultrafiltration was used in this study to concentrate bacteria, including Escherichia coli O157:H7, from 50-liter produce washes (PWs, sieved produce wash). Cells trapped in the filters were recovered in approximately 400 ml of buffer to create PW retentates (PWRs). Extent of concentration was determined by analyzing PWs and PWRs for total coliform bacteria and E. coli O157:H7 using standard methods. In addition, an electrochemiluminescence immunoassay was evaluated for detection of E. coli O157:H7 in spiked PWs and PWRs to demonstrate usefulness of the ACS for same-day detection. The levels of total coliform bacteria and E. coli O157:H7 in PWRs were higher than those in PWs by 1.85 ± 0.41 log most probable number per 100 ml and 1.82 ± 0.24 log CFU/ml, respectively. Electrochemiluminescence detection of E. coli O157:H7 was accomplished within 2 h using ACS concentration of lettuce and spinach wash water artificially spiked with the pathogen at levels as low as 0.36 log CFU/ml and 1.39 log CFU/ml, respectively. Detection of E. coli O157:H7 at -0.93 ± 0.15 log CFU/ml in lettuce wash occurred within approximately 6 h when a 4-h enrichment step was added to the procedure. Use of dead-end ultrafiltration increased bacterial concentrations in PWR and allowed same-day detection of low levels of E. coli O157:H7 in PW. This concentration system could be useful to improve the sensitivity of current rapid methods for detection of low levels of foodborne pathogens in PW water.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.