Escherichia coli has been widely used for the production of recombinant proteins. However, the unbalances between host metabolism and recombinant biosynthesis continue to hamper the efficiency of these recombinant bioprocesses. The additional drainage of biosynthetic precursors toward recombinant processes burdens severely the metabolism of cells that, ultimately, elicits a series of stress responses, reducing biomass growth and recombinant protein production. Several strategies to overcome these metabolic limitations have been implemented; however, in most cases, improvements in recombinant protein expression were achieved at the expense of biomass growth arrest, which significantly hampers the efficiency of recombinant bioprocesses. With the advent of high throughput techniques and modelling approaches that provide a system-level understanding of the cellular systems, it is now expected that new advances in recombinant bioprocesses are achieved. By providing means to deal with these systems, our understanding on the metabolic behaviour of recombinant cells will advance and can be further explored to the design of suitable hosts and more efficient and cost-effective bioprocesses. Here, we review the major metabolic responses associated with recombinant processes and the engineering strategies relevant to overcome these stresses. Moreover, the advantages of applying systems levels engineering strategies to enhance recombinant protein production in E. coli cells are discussed and future perspectives on the advances of mathematical modelling approaches to study these systems are exposed.
Introduction Microbial cells secrete many metabolites during growth, including important intermediates of the central carbon metabolism. This has not been taken into account by researchers when modeling microbial metabolism for metabolic engineering and systems biology studies.
Materials and MethodsThe uptake of metabolites by microorganisms is well studied, but our knowledge of how and why they secrete different intracellular compounds is poor. The secretion of metabolites by microbial cells has traditionally been regarded as a consequence of intracellular metabolic overflow. Conclusions Here, we provide evidence based on time-series metabolomics data that microbial cells eliminate some metabolites in response to environmental cues, independent of metabolic overflow. Moreover, we review the different mechanisms of metabolite secretion and explore how this knowledge can benefit metabolic modeling and engineering.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.