We describe the soft chemistry synthesis of amine-templated gallium chalcogenide nanotubes through the reaction of gallium(iii) acetylacetonate and the chalcogen (sulfur, selenium) using a mixture of long-chain amines (hexadecylamine and dodecylamine) as a solvent. Beyond their role as solvent, the amines also act as a template, directing the growth of discrete units with a one-dimensional multilayer tubular nanostructure. These new materials, which broaden the family of amine-stabilized gallium chalcogenides, can be tentatively classified as direct large band gap semiconductors. Their preliminary performance as active material for electrodes in lithium ion batteries has also been tested, demonstrating great potential in energy storage field even without optimization.
Self-assembly of nanomaterials by wet chemistry methods is a suitable approach for the preparation of engineered structures with novel functionalities. In this work, we study the ability of long-chain amines to direct the growth of a layered nanomaterial, using [Re x Se y Cl z ] clusters as building blocks. The amines link to the clusters as ligands during the synthesis, directing the self-assembly due to their amphiphilic properties, which produces a platelet-shaped 2D material with sizes up to several μm in diameter and thicknesses in the range of 60-80 nm. This is, to the best of our knowledge, the first report on a one-step mild chemistry method for the preparation of 2D structures composed of alternate layers of self-assembled amines and sub-nm clusters of a rhenium chalcogenide. Furthermore, these materials can be used as a suitable source of clusters which then, conveniently released by a simple acid/base reaction, have been successfully incorporated to the surface of graphene. The simple clusters deposition method developed here offers a promising route towards the preparation of hybrid clusters/2D materials with outstanding properties arising from quantum confinement effects combined with high surface areas and the enormous compositional variety of 2D materials and clusters. These hybrids are expected to play a key role in the development of active materials for applications ranging from highly efficient energy storage systems, more active catalysts and upper-sensitivity gas sensors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.