How cues that trigger the wound response result in tissue healing is a question of immense biological and medical importance. Here we uncover roles for mitochondrial reactive oxygen species (mtROS) during Drosophila dorsal closure, a model for wound healing. By using real-time visualization of ROS activity and single-cell perturbation strategies, we demonstrate that stochasticities in ROS generation in the amnioserosa are necessary and sufficient to trigger cell delamination. We identify dose-dependent effects of mtROS on actomyosin and mitochondrial architecture, dynamics, and activity that mediate both stochasticities in cell behavior and the phases of tissue dynamics accompanying dorsal closure. Our results establish that ROS levels tune cell behavior and tissue dynamics qualitatively and quantitatively. They identify a pathway triggered by ROS and mediated by the Rho effector ROCK and its substrates that influences tissue patterning and homeostasis through the coordinate regulation of both mitochondrial morphology and tissue tension.
SUMMARYDead cells in most epithelia are eliminated by cell extrusion. Here, we explore whether cell delamination in the amnioserosa, a seemingly stochastic event that results in the extrusion of a small fraction of cells and known to provide a force for dorsal closure, is contingent upon the receipt of an apoptotic signal. Through the analysis of mutant combinations and the profiling of apoptotic signals in situ, we establish spatial, temporal and molecular hierarchies in the link between death and delamination. We show that although an apoptotic signal is necessary and sufficient to provide cell-autonomous instructions for delamination, its induction during natural delamination occurs downstream of mitochondrial fragmentation. We further show that apoptotic regulators can influence both delamination and dorsal closure cell non-autonomously, presumably by influencing tissue mechanics. The spatial heterogeneities in delamination frequency and mitochondrial morphology suggest that mechanical stresses may underlie the activation of the apoptotic cascade through their influence on mitochondrial dynamics. Our results document for the first time the temporal propagation of an apoptotic signal in the context of cell behaviours that accomplish morphogenesis during development. They highlight the importance of mitochondrial dynamics and tissue mechanics in its regulation. Together, they provide novel insights into how apoptotic signals can be deployed to pattern tissues.
iRhom proteins are catalytically inactive relatives of rhomboid intramembrane proteases. There is a rapidly growing body of evidence that these pseudoenzymes have a central function in regulating inflammatory and growth factor signalling and consequent roles in many diseases. iRhom pseudoproteases have evolved new domains from their proteolytic ancestors, which are integral to their modular regulation and functions. Although we cannot yet conclude the full extent of their molecular and cellular mechanisms, there is a clearly emerging theme that they regulate the stability and trafficking of other membrane proteins. In the best understood case, iRhoms act as regulatory cofactors of the ADAM17 protease, controlling its function of shedding cytokines and growth factors. It seems likely that as the involvement of iRhoms in human diseases is increasingly recognized, they will become the focus of pharmaceutical interest, and here we discuss what is known about their molecular mechanisms and relevance in known pathologies.
Animals have evolved multiple mechanisms to protect themselves from the cumulative effects of age‐related cellular damage. Here, we reveal an unexpected link between the TNF (tumour necrosis factor) inflammatory pathway, triggered by the metalloprotease ADAM17/TACE, and a lipid droplet (LD)‐mediated mechanism of protecting retinal cells from age‐related degeneration. Loss of ADAM17, TNF and the TNF receptor Grindelwald in pigmented glial cells of the Drosophila retina leads to age‐related degeneration of both glia and neurons, preceded by an abnormal accumulation of glial LDs. We show that the glial LDs initially buffer the cells against damage caused by glial and neuronally generated reactive oxygen species (ROS), but that in later life the LDs dissipate, leading to the release of toxic peroxidated lipids. Finally, we demonstrate the existence of a conserved pathway in human iPS‐derived microglia‐like cells, which are central players in neurodegeneration. Overall, we have discovered a pathway mediated by TNF signalling acting not as a trigger of inflammation, but as a cytoprotective factor in the retina.
The folding capacity of membrane and secretory proteins in the endoplasmic reticulum (ER) can be challenged by physiological and pathological perturbations, causing ER stress. If unresolved, this leads to cell death. We report a role for iRhom pseudoproteases in controlling apoptosis due to persistent ER stress. Loss of iRhoms causes cells to be resistant to ER stress-induced apoptosis. iRhom1 and iRhom2 interact with IP3 receptors, critical mediators of intracellular Ca2+ signalling, and regulate ER stress-induced transport of Ca2+ into mitochondria, a primary trigger of mitochondrial membrane depolarisation and cell death. iRhoms also bind to the anti-apoptotic regulator BCL-2, attenuating the inhibitory interaction between BCL-2 and IP3 receptors, which promotes ER Ca2+ release. The discovery of the participation of iRhoms in the control of ER stress-induced cell death further extends their potential pathological significance to include diseases dependent on protein misfolding and aggregation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.