The present-day envelope of gaseous planets is a relic of how these giant planets originated and evolved. Measuring their elemental composition therefore presents a powerful opportunity to answer long-standing questions regarding planet formation. Obtaining precise observational constraints on the elemental inventory of giant exoplanets has, however, remained challenging owing to the limited simultaneous wavelength coverage of current space-based instruments. Here, we present thermal emission observations of the nontransiting hot Jupiter τ Boo b using the new wide wavelength coverage (0.95–2.50 μm) and high spectral resolution (R = 70,000) CFHT/SPIRou spectrograph. By combining a total of 20 hr of SPIRou data obtained over five nights in a full atmospheric retrieval framework designed for high-resolution data, we constrain the abundances of all the major oxygen- and carbon-bearing molecules and recover a noninverted temperature structure using a new free-shape, nonparametric temperature–pressure profile retrieval approach. We find a volume mixing ratio of log(CO) = − 2.46 − 0.29 + 0.25 and a highly depleted water abundance of less than 0.0072 times the expected value for a solar composition envelope. Combined with upper limits on the abundances of CH4, CO2, HCN, TiO, and C2H2, this results in a gas-phase C/H ratio of 5.85 − 2.82 + 4.44 × solar, consistent with the value of Jupiter, and an envelope C/O ratio robustly greater than 0.60, even when taking into account the oxygen that may be sequestered out of the gas phase. Combined, the inferred supersolar C/H, O/H, and C/O ratios on τ Boo b support a formation scenario beyond the water snowline in a disk enriched in CO owing to pebble drift.
We report the 6.5σ detection of water from the hot Jupiter HD187123b with a Keplerian orbital velocity K p of 53±13 km s −1. This high-confidence detection is made using a multi-epoch, high-resolution, crosscorrelation technique, and corresponds to a planetary mass of-+ 1.4 0.3 0.5 M J and an orbital inclination of 21°±5°. The technique works by treating the planet/star system as a spectroscopic binary and obtaining high signal-tonoise, high-resolution observations at multiple points across the planet's orbit to constrain the system's binary dynamical motion. All together, seven epochs of Keck/NIRSPEC L-band observations were obtained, with five before the instrument upgrade and two after. Using high-resolution SCARLET planetary and PHOENIX stellar spectral models, we were able to drastically increase the confidence of the detection by running simulations that could reproduce, and thus remove, the nonrandom structured noise in the final likelihood space well. The ability to predict multi-epoch results will be extremely useful for furthering the technique. Here, we use these simulations to compare three different approaches to combining the cross correlations of high-resolution spectra and find that the Zucker log(L) approach is least affected by unwanted planet/star correlation for our HD187123 data set. Furthermore, we find that the same total signal-to-noise ratio (S/N) spread across an orbit in many, lower S/N epochs rather than fewer, higher S/N epochs could provide a more efficient detection. This work provides a necessary validation of multi-epoch simulations, which can be used to guide future observations and will be key to studying the atmospheres of farther separated, non-transiting exoplanets.
We present the first exoplanet atmospheric detection made as part of the SPIRou Legacy Survey, a Large Observing Program of 300 nights exploiting the capabilities of SPIRou, the new near-infrared high-resolution (R ∼ 70,000) spectropolarimeter installed on the Canada–France–Hawaii Telescope (3.6 m). We observed two transits of HD 189733b, an extensively studied hot Jupiter that is known to show prominent water vapor absorption in its transmission spectrum. When combining the two transits, we successfully detect the planet’s water vapor absorption at 5.9σ using a cross-correlation t-test, or with a ΔBIC > 10 using a log-likelihood calculation. Using a Bayesian retrieval framework assuming parameterized temperature–pressure (T-P) profile atmospheric models, we constrain the planet atmospheric parameters, in the region probed by our transmission spectrum, to the following values: log 10 VMR [ H 2 O ] = − 4.4 − 0.4 + 0.4 , and P cloud ≳ 0.2 bar (gray clouds), both of which are consistent with previous studies of this planet. Our retrieved water volume-mixing ratio is slightly subsolar; although, combining it with the previously retrieved super-solar CO abundances from other studies would imply a super-solar C/O ratio. We furthermore measure a net blueshift of the planet signal of − 4.62 − 0.44 + 0.46 km s−1, which is somewhat larger than many previous measurements and unlikely to result solely from winds in the planet's atmosphere, although it could possibly be explained by a transit signal dominated by the trailing limb of the planet. This large blueshift is observed in all of the different detection/retrieval methods that were performed and in each of the two transits independently.
While high-resolution cross-correlation spectroscopy (HRCCS) techniques have proven effective at characterizing the atmospheres of transiting and nontransiting hot Jupiters, the limitations of these techniques are not well understood. We present a series of simulations of one HRCCS technique, which combines the cross-correlation functions from multiple epochs, to place temperature and contrast limits on the accessible exoplanet population for the first time. We find that planets approximately Saturn-sized and larger within ∼0.2 au of a Sun-like star are likely to be detectable with current instrumentation in the L band, a significant expansion compared with the previously studied population. Cooler (T eq 1000 K) exoplanets are more detectable than suggested by their photometric contrast alone as a result of chemical changes that increase spectroscopic contrast. The L-band CH 4 spectrum of cooler exoplanets enables robust constraints on the atmospheric C/O ratio at T eq ∼ 900 K, which have proven difficult to obtain for hot Jupiters. These results suggest that the multi-epoch approach to HRCCS can detect and characterize exoplanet atmospheres throughout the inner regions of Sun-like systems with existing highresolution spectrographs. We find that many epochs of modest signal-to-noise ratio (S/N epoch ∼ 1500) yield the clearest detections and constraints on C/O, emphasizing the need for high-precision near-infrared telluric correction with short integration times.
The future is now — after its long-awaited launch in December 2021, JWST began science operations in July 2022 and is already revolutionizing exoplanet astronomy. The Early Release Observations (ERO) program was designed to provide the first images and spectra from JWST, covering a multitude of science cases and using multiple modes of each on-board instrument. Here, we present transmission spectroscopy observations of the hot-Saturn WASP-96 b with the Single Object Slitless Spectroscopy (SOSS) mode of the Near Infrared Imager and Slitless Spectrograph, observed as part of the ERO program. As the SOSS mode presents some unique data reduction challenges, we provide an in-depth walk-through of the major steps necessary for the reduction of SOSS data: including background subtraction, correction of 1/f noise, and treatment of the trace order overlap. We furthermore offer potential routes to correct for field star contamination, which can occur due to the SOSS mode’s slitless nature. By comparing our extracted transmission spectrum with grids of atmosphere models, we find an atmosphere metallicity between 1× and 5× solar, and a solar carbon-to-oxygen ratio. Moreover, our models indicate that no grey cloud deck is required to fit WASP-96 b’s transmission spectrum, but find evidence for a slope shortward of 0.9 μm, which could either be caused by enhanced Rayleigh scattering or the red wing of a pressure-broadened Na feature. Our work demonstrates the unique capabilities of the SOSS mode for exoplanet transmission spectroscopy and presents a step-by-step reduction guide for this new and exciting instrument.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.