This study evaluated the biocompatibility of a new silicone-based sealer (GuttaFlow Bioseal) in rat subcutaneous tissue and compared the results with those for GuttaFlow2 and AH Plus. Each of 16 Wistar rats received four subcutaneous tissue implants, namely, GuttaFlow Bioseal, GuttaFlow2, AH Plus, and one empty polyethylene tube. Eight rats were euthanized at day 8 and the remaining eight at day 30. Histological sections were stained with haematoxylin and eosin and analysed with a light microscope. Scores were established for inflammatory reaction, macrophage infiltrate, thickness of the fibrous capsule, and vascular changes. Differences between groups were assessed by using the Friedman test with Bonferroni correction. Histological analysis showed that GuttaFlow Bioseal had the lowest inflammatory reaction of all tested sealers at day 8. At day 30, the silicone-based sealers had similar inflammation profiles, but inflammation scores were nonsignificantly higher for AH Plus than for the negative control. The inflammatory reaction decreased from day 8 to day 30 in all sealers. GuttaFlow Bioseal had the most macrophage infiltrate. Under the present experimental conditions, GuttaFlow Bioseal induced limited inflammatory reactions at days 8 and 30, and initial inflammatory reactions to GuttaFlow2 and AH Plus subsided within 30 days. All tested sealers exhibited satisfactory biocompatibility at day 30 after subcutaneous implantation.
Despite the actual therapeutic approaches for inflammatory bowel disease (IBD), efficient and secure alternative options remain a research focus. In this context, anthocyanins seem promising natural anti-inflammatory agents, but their action mechanisms and efficacy as compared with established drugs still require more clarification. The main aim of this study was to compare the anti-inflammatory action of a chemically characterized anthocyanin-rich fraction (ARF), obtained from Portuguese blueberries (Vaccinium corymbosum L.), with that of 5-aminosalicylic acid (5-ASA), a first-line drug in IBD, in a 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced colitis rat model. Such fraction showed a high content and great molecular diversity of anthocyanins, with malvidin-3-galactoside and petunidin-3-arabinoside in the highest concentrations. After daily administration by intragastric infusion for 8 days, ARF, at a molar anthocyanin concentration about 30 times lower than 5-ASA, showed a higher effectiveness in counteracting the intestinal inflammation, as assessed by i) body weight variation and colon damage score, ii) reduction in leukocyte infiltration, iii) increase in antioxidant defenses and iv) by downregulation of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in colon tissue homogenates. The strong inhibition of COX-2 expression seems to be a crucial anti-inflammatory mechanism common to both ARF and 5-ASA, but the additional higher abilities of anthocyanins to downregulate iNOS and to decrease leukocytes infiltration and to increase antioxidant defenses in colon may account for the much higher anti-inflammatory action of anthocyanins. These data may contribute to the development of a promising natural approach in IBD management.
Burning mouth syndrome (BMS) is a neuropathic pain disorder associated with a burning sensation on oral mucosal surfaces with frequently reported xerostomia, dysgeusia and tingling or paraesthetic sensations. However, patients present no clinically evident causative lesions. The poor classification of the disorder has resulted in a diagnostic challenge, particularly for the clinician/dentist evaluating these individuals. Major research developments have been made in the BMS field in recent years to address this concern, principally in terms of the pathophysiological mechanisms underlying the disorder, in addition to therapeutic advancements. For the purpose of this review, an update on the pathophysiological mechanisms will be discussed from a neuropathic, immunological, hormonal and psychological perspective. This review will also focus on the many therapeutic strategies that have been explored for BMS, including antidepressants/antipsychotics, non‐steroidal anti‐inflammatories, hormone replacement therapies, phytotherapeutic compounds and non‐pharmacological interventions, overall highlighting the lack of controlled clinical studies to support the effectiveness of such therapeutic avenues. Particular focus is given to the cannabinoid system and the potential of cannabis‐based therapeutics in managing BMS patients.
Cannabidiol (CBD), one of the primary non-euphoric components in the Cannabis sativa L. plant, has undergone clinical development over the last number of years as a therapeutic for patients with Lennox-Gastaut syndrome and Dravet syndromes. This phytocannabinoid demonstrates functional and pharmacological diversity, and research data indicate that CBD is a comparable antioxidant to common antioxidants. This review gathers the latest knowledge regarding the impact of CBD on oxidative signalling, with focus on the proclivity of CBD to regulate antioxidants and control the production of reactive oxygen species. CBD is considered an attractive therapeutic agent for neuroimmune disorders, and a body of literature indicates that CBD can regulate redox function at multiple levels, with a range of downstream effects on cells and tissues. However, pro-oxidant capacity of CBD has also been reported, and hence caution must be applied when considering CBD from a therapeutic standpoint. Such pro- and antioxidant functions of CBD may be cell- and model-dependent, and may also be influenced by CBD dose, the duration of CBD treatment and the underlying pathology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.