Staphylococcus aureus is a Gram-positive bacterium that is present in the human microbiota. Nevertheless, these bacteria can be pathogenic to the humans. Due to the increasing occurrence of antibiotic-resistant S. aureus strains, new approaches to control this pathogen are necessary. The antimicrobial photodynamic inactivation (PDI) process is based in the combined use of light, oxygen, and an intermediary agent (a photosensitizer). These three components interact to generate cytotoxic reactive oxygen species that irreversibly damage vital constituents of the microbial cells and ultimately lead to cell death. Although PDI is being shown to be a promising alternative to the antibiotic approach for the inactivation of pathogenic microorganisms, information on effects of photosensitization on particular virulence factors is strikingly scarce. The objective of this work was to evaluate the effect of PDI on virulence factors of S. aureus and to assess the potential development of resistance of this bacterium as well as the recovery of the expression of the virulence factors after successive PDI cycles. For this, the photosensitizer 5,10,15,20-tetrakis(1-methylpyridinium-4-yl)porphyrin tetra-iodide (Tetra-Py+-Me) and six strains of S. aureus [one reference strain, one strain with one enterotoxin, two strains with three enterotoxins and two methicillin resistant strains (MRSA) – one with five enterotoxins and the other without enterotoxins] were used. The effect of photosensitization on catalase activity, beta hemolysis, lipases, thermonuclease, enterotoxins, coagulase production, and resistance/susceptibility to methicillin was tested. To assess the development of resistance after successive cycles of treatment, three strains of S. aureus (ATCC 6538, 2065 MA, and SA 3 MRSA) were used. The surviving colonies of a first cycle of PDI were collected from the solid medium and subjected to further nine consecutive cycles of PDI. The results indicate that the expression of some external virulence factors is affected by PDI and enterotoxin producing strains were more susceptible to PDI than non-toxigenic strains. The surviving bacteria did not develop resistance. PDI, contrarily to traditional antibiotics, inhibited the expression of virulence factors, efficiently inactivating either highly virulent strains and low virulent S. aureus strains, inactivating also antibiotic susceptible and resistant strains, without development of photoresistance after at least 10 consecutive cycles of treatment, and so this therapy may become a strong promising alternative to antibiotics to control pathogenic microorganisms.
: The use of anti-diabetic drugs has been increasing worldwide and the evolution of therapeutics has been enormous. Still, the currently available anti-diabetic drugs do not present the desired efficacy and are generally associated with serious adverse effects. Thus, entirely new interventions, addressing the underlying etiopathogenesis of type 2 diabetes mellitus, are required. Chalcones, secondary metabolites of terrestrial plants and precursors of the flavonoids biosynthesis, have been used for a long time in traditional medicine due to their wide-range of biological activities, from which the anti-diabetic activity stands out. : This review systematizes the information found in literature about the anti-diabetic properties of chalcones, in vitro and in vivo. Chalcones are able to exert these properties by acting in different therapeutic targets: Dipeptidyl Peptidase 4 (DPP-4); Glucose Transporter Type 4 (GLUT4), Sodium Glucose Cotransporter 2 (SGLT2), α-amylase, α-glucosidase, Aldose Reductase (ALR), Protein Tyrosine Phosphatase 1B (PTP1B), Peroxisome Proliferator-activated Receptor-gamma (PPARγ) and Adenosine Monophosphate (AMP)-activated Protein Kinase (AMPK). Chalcones are, undoubtedly, promising anti-diabetic agents, and some crucial structural features have already been established. From the Structure-Activity Relationships analysis, it can generally be stated that the presence of hydroxyl, prenyl and geranyl groups in their skeleton improves their activity for the evaluated anti-diabetic targets.
The NLCs developed can be used as a promising carrier for safer and efficient management of tuberculosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.