This study examined the effects of Ramadan fasting on anaerobic performances and their diurnal fluctuations. In a balanced and randomized study design, 12 subjects were measured for maximal power (P(max); force-velocity test), peak power (P(peak)), and mean power (P(mean)) with the Wingate test at 07:00, 17:00, and 21:00 h on four different occasions: one week before Ramadan (BR), the second week of Ramadan (SWR), the fourth week of Ramadan (ER), and two weeks after Ramadan (AR). There was an interval of 28 h between any two successive tests. Oral temperature was measured before each test. Under each condition, the results showed a time-of-day effect on oral temperature. Analysis of variance revealed a significant (Ramadanxtime-of-day of test) interaction effect on P(max). This variable improved significantly from morning to evening before Ramadan (1.1+/-0.2 W x kg(-1)), during the second week of Ramadan (0.6+/-0.2 W x kg(-1)), and two weeks after the end of Ramadan (0.9+/-0.2 W x kg(-1)). However, daily fluctuations disappeared during the fourth week of Ramadan. For P(peak) and P(mean), there was no significant Ramadan x test-time interaction. These variables improved significantly from morning to evening before Ramadan ([1+/-0.3 W x kg(-1)] for P(peak) and [1.7+/-1.6 W x kg(-1)] for P(mean)) and in the second week of Ramadan ([0.9+/-0.6 W x kg(-1)] for P(peak) and [1.7+/-1.5 W x kg(-1)] for P(mean)). However, they were not affected by time-of-day in the fourth week of Ramadan. Considering the effect of Ramadan on anaerobic performances, in comparison with before Ramadan, no significant difference was observed during Ramadan at 07:00 h. The variables were significantly lower in the second week of Ramadan and in the fourth week of Ramadan at 17:00 h and 21:00 h. P(mean) was not affected during the second week of Ramadan. In conclusion, the time-of-day effect on anaerobic power variables tends to disappear during Ramadan. In comparison with the period before Ramadan, anaerobic performances were unaffected in the morning but impaired in the evening during Ramadan.
The purpose of this study was to determine the effects of 16 weeks of combined strength and plyometric training or plyometric training alone, and how a detraining program can modify adaptations in response to the training stimulus. Sixty male volleyball players (circa PHV:-1 to +1 years from PHV) were assigned to a Combined Training group (CTG) (n=20), a Plyometric Training group (PTG) (n=20) or a control group (CG) (n=20). The experimental groups (CTG and PTG) participated in training twice weekly for 16 weeks. Thigh muscle volume, body fat, flexibility, sprint, jump height and medicine ball throw were measured at pre-training, post-training and detraining. Respectively, the CTG and PTG showed increases in thigh muscle volume (Effect size: 0.71 and 0.42), and decreases in body fat (-0.42 and -0.34) as well as improvements in 5 m sprint (-0.69 and -0.46) 10 m sprint (-0.31 and -0.3), lower body muscle power (0.44 and 0.36) and upper body muscle power (1.32 and 0.7). After the detraining period, all groups maintained previously attained muscle power (6.79% to 9.87%; p<0.001). In conclusion, combined strength and plyometric training provided better improvements than plyometric training only. The combination of strength and plyometric training is a time-effective training modality that confers improvements in physical performance measures, muscle size and body fat. A temporary period of detraining may not undermine performance gains in pubertal volleyball players.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.