A comprehensive understanding of collocated social interactions can help campuses and organizations better support their community. Universities could determine new ways to conduct classes and design programs by studying how students have collocated in the past. However, this needs data that describe large groups over a long period. Harnessing user devices to infer collocation, while tempting, is challenged by privacy concerns, power consumption, and maintenance issues. Alternatively, embedding new sensors across the entire campus is expensive. Instead, we investigate an easily accessible data source that can retroactively depict multiple users on campus over a semester, a managed WiFi network. Despite the coarse approximations of collocation provided by WiFi network logs, we demonstrate that leveraging such data can express meaningful outcomes of collocated social interaction. Since a known outcome of collocating with peers is improved performance, we inspected if automatically–inferred collocation behaviors can indicate the individual performance of project group members on a campus. We studied 163 students (in 54 project groups) over 14 weeks. After describing how we determine collocation with the WiFi logs, we present a study to analyze how collocation within groups relates to a student’s final score. We found that modeling collocation behaviors showed a significant correlation (Pearson’s$r =0.24$ r = 0.24 ) with performance (better than models of peer feedback or individual behaviors). These findings emphasize that it is feasible and valuable to characterize collocated social interactions with archived WiFi network logs. We conclude the paper with a discussion of applications for repurposing WiFi logs to describe collocation, along with privacy considerations, and directions for future work.
Infectious diseases, like COVID-19, pose serious challenges to university campuses, and they typically adopt closure as a non-pharmaceutical intervention to control spread early and ensure a gradual return to normalcy. These policies, like remote instruction (SQ), reduce potential contact but also have broad side-effects on campus by hampering local economy, students learning outcomes, and community wellbeing. In this paper, we demonstrate that university policymakers can mitigate these tradeoffs by leveraging anonymized data from their WiFi infrastructure to learn community mobility (WF) and in turn explore more granular policies like localized closures (LC). WF can construct contact networks that capture behavior in a variety of spaces, highlighting new potential transmission pathways and temporal variation in contact behavior. Additionally, WF enables us to design LC policies that close super-spreader locations on campus. On simulating disease spread with contact networks from WF, we find that LC maintains the same reduction in cumulative infections as SQ while showing greater reduction in peak infections and internal transmission. Moreover, LC reduces campus burden by closing fewer locations, forcing fewer students into completely online schedules, and requiring no additional isolation. WF can empower universities to conceive and assess a variety of closure policies to prevent future outbreaks.
Infectious diseases, like COVID-19, pose serious challenges to university campuses, which typically adopt closure as a non-pharmaceutical intervention to control spread and ensure a gradual return to normalcy. Intervention policies, such as remote instruction (RI) where large classes are offered online, reduce potential contact but also have broad side-effects on campus by hampering the local economy, students’ learning outcomes, and community wellbeing. In this paper, we demonstrate that university policymakers can mitigate these tradeoffs by leveraging anonymized data from their WiFi infrastructure to learn community mobility—a methodology we refer to as WiFi mobility models (WiMob). This approach enables policymakers to explore more granular policies like localized closures (LC). WiMob can construct contact networks that capture behavior in various spaces, highlighting new potential transmission pathways and temporal variation in contact behavior. Additionally, WiMob enables us to design LC policies that close super-spreader locations on campus. By simulating disease spread with contact networks from WiMob, we find that LC maintains the same reduction in cumulative infections as RI while showing greater reduction in peak infections and internal transmission. Moreover, LC reduces campus burden by closing fewer locations, forcing fewer students into completely online schedules, and requiring no additional isolation. WiMob can empower universities to conceive and assess a variety of closure policies to prevent future outbreaks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.