Present study deals with the identification of a novel aldo/keto reductase, AKR17A1 from Anabaena sp. PCC7120 and adds on as 17th family of AKR superfamily drawn from a wide variety of organisms. AKR17A1 shares many characteristics of a typical AKR such as— (i) conferring tolerance to multiple stresses like heat, UV-B, and cadmium, (ii) excellent activity towards known AKR substrates (isatin and 2-nitrobenzaldehyde), and (iii) obligate dependence on NADPH as a cofactor for enzyme activity. The most novel attribute of AKR17A1, first reported in this study, is its capability to metabolize butachlor, a persistent rice field herbicide that adversely affects agro-ecosystem and non-target organisms. The AKR17A1 catalyzed- degradation of butachlor resulted into formation of 1,2-benzene dicarboxylic acid and 2,6 bis (1,1, dimethylethyl) 4,-methyl phenol as the major products confirmed by GC-MS analysis.
High salt concentration represents one of the most significant abiotic constraints, affecting all life forms including plants and cyanobacteria. Soil salinity curtails plant growth by way of osmotic, ionic and oxidative stresses resulting in multiple inhibitory effects on various physiological processes such as growth, photosynthesis, respiration and cellular metabolism. In order to combat high salinity, various adaptive strategies employed include ion homeostasis achieved by ion transport and compartmentalization of injurious ions, osmotic homeostasis by accumulation of compatible solutes/osmolytes and upregulation of antioxidant defence mechanism. The aforesaid processes are executed through SOS and MAPK signalling pathways leading to modulation of gene expression. Salt stress signal transduction pathways initiate through sensing extracellular Na + ions causing modification of constitutively expressed transcription factors. This modification is responsible for expression of early transcriptional activators such as CBF/DREB gene family which eventually activate stress tolerance effector genes such as osmolyte biosynthesis genes, detoxification enzymes, and chaperones. Various genes/cDNAs encoding proteins involved in these adaptive mechanisms have been isolated and identified. Bioinformatic predictions through docking revealed interaction of salt across the species at conserved domains and motifs as a possible mechanism for response of a particular protein under salt stress. In this chapter, major aspects of salt stress are reviewed with emphasis on its detrimental consequences and biochemical and molecular mechanisms of signal transduction in plants and cyanobacteria under high salinity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.