Background There is a high prevalence of children and young people (CYP) experiencing mental health (MH) problems. Owing to accessibility, affordability, and scalability, an increasing number of digital health interventions (DHIs) have been developed and incorporated into MH treatment. Studies have shown the potential of DHIs to improve MH outcomes. However, the modes of delivery used to engage CYP in digital MH interventions may differ, with implications for the extent to which findings pertain to the level of engagement with the DHI. Knowledge of the various modalities could aid in the development of interventions that are acceptable and feasible. Objective This review aimed to (1) identify modes of delivery used in CYP digital MH interventions, (2) explore influencing factors to usage and implementation, and (3) investigate ways in which the interventions have been evaluated and whether CYP engage in DHIs. Methods A literature search was performed in the Cochrane Library, Excerpta Medica dataBASE (EMBASE), Medical Literature Analysis and Retrieval System Online (MEDLINE), and PsycINFO databases using 3 key concepts “child and adolescent mental health,” “digital intervention,” and “engagement.” Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines were followed using rigorous inclusion criteria and screening by at least two reviewers. The selected articles were assessed for quality using the mixed methods appraisal tool, and data were extracted to address the review aims. Data aggregation and synthesis were conducted and presented as descriptive numerical summaries and a narrative synthesis, respectively. Results This study identified 6 modes of delivery from 83 articles and 71 interventions for engaging CYP: (1) websites, (2) games and computer-assisted programs, (3) apps, (4) robots and digital devices, (5) virtual reality, and (6) mobile text messaging. Overall, 2 themes emerged highlighting intervention-specific and person-specific barriers and facilitators to CYP’s engagement. These themes encompassed factors such as suitability, usability, and acceptability of the DHIs and motivation, capability, and opportunity for the CYP using DHIs. The literature highlighted that CYP prefer DHIs with features such as videos, limited text, ability to personalize, ability to connect with others, and options to receive text message reminders. The findings of this review suggest a high average retention rate of 79% in studies involving various DHIs. Conclusions The development of DHIs is increasing and may be of interest to CYP, particularly in the area of MH treatment. With continuous technological advancements, it is important to know which modalities may increase engagement and help CYP who are facing MH problems. This review identified the existing modalities and highlighted the influencing factors from the perspective of CYP. This knowledge provides information that can be used to design and evaluate new interventions and offers important theoretical insights into how and why CYP engage in DHIs.
Trust plays an essential role in all human relationships. However, measuring trust remains a challenge for researchers exploring psychophysiological signals. Therefore, this article aims to systematically map the approaches used in studies assessing trust with psychophysiological signals. In particular, we examine the numbers and frequency of combined psychophysiological signals, the primary outcomes of previous studies, and the types and most commonly used data analysis techniques for analyzing psychophysiological data to infer a trust state. For this purpose, we employ a systematic mapping review method, through which we analyze 51 carefully selected articles (studies focused on trust using psychophysiology). Two significant findings are as follows: (1) Psychophysiological signals from EEG(electroencephalogram) and ECG(electrocardiogram) for monitoring peripheral and central nervous systems are the most frequently used to measure trust, while audio and EOG(electro-oculography) psychophysiological signals are the least commonly used. Moreover, the maximum number of psychophysiological signals ever combined so far is three (2). Most of which are peripheral nervous system monitoring psychophysiological signals that are low in spatial resolution. (3) Regarding outcomes: there is only one tool proposed for assessing trust in an interpersonal context, excluding trust in a technology context. Moreover, there are no stable and accurate ensemble models that have been developed to assess trust; all prior attempts led to unstable but fairly accurate models or did not satisfy the conditions for combining several algorithms (ensemble). In conclusion, the extent to which trust can be assessed using psychophysiological measures during user interactions (real-time) remains unknown, as there several issues, such as the lack of a stable and accurate ensemble trust classifier model, among others, that require urgent research attention. Although this topic is relatively new, much work has been done. However, more remains to be done to provide clarity on this topic.
No abstract
Trust as a precursor for users' acceptance of artificial intelligence (AI) technologies that operate as a conceptual extension of humans (e.g., autonomous vehicles (AVs)) is highly influenced by users' risk perception amongst other factors. Prior studies that investigated the interplay between risk and trust perception recommended the development of real-time tools for monitoring cognitive states (e.g., trust). The primary objective of this study was to investigate a feature selection method that yields feature sets that can help develop a highly optimized and stable ensemble trust classifier model. The secondary objective of this study was to investigate how varying levels of risk perception influence users' trust and overall reliance on technology. A within-subject four-condition experiment was implemented with an AV driving game. This experiment involved 25 participants, and their electroencephalogram, electrodermal activity, and facial electromyogram psychophysiological signals were acquired. We applied wrapper, filter, and hybrid feature selection methods on the 82 features extracted from the psychophysiological signals. We trained and tested five voting-based ensemble trust classifier models using training and testing datasets containing only the features identified by the feature selection methods. The results indicate the superiority of the hybrid feature selection method over other methods in terms of model performance. In addition, the self-reported trust measurement and overall reliance of participants on the technology (AV) measured with joystick movements throughout the game reveals that a reduction in risk results in an increase in trust and overall reliance on technology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.