Listening environments contain background sounds that mask speech and lead to communication challenges. Sensitivity to slow acoustic fluctuations in speech can help segregate speech from background noise. Semantic context can also facilitate speech perception in noise, for example, by enabling prediction of upcoming words. However, not much is known about how different degrees of background masking affect the neural processing of acoustic and semantic features during naturalistic speech listening. In the current electroencephalography (EEG) study, participants listened to engaging, spoken stories masked at different levels of multi-talker babble to investigate how neural activity in response to acoustic and semantic features changes with acoustic challenges, and how such effects relate to speech intelligibility. The pattern of neural response amplitudes associated with both acoustic and semantic speech features across masking levels was U-shaped, such that amplitudes were largest for moderate masking levels. This U-shape may be due to increased attentional focus when speech comprehension is challenging, but manageable. The latency of the neural responses increased linearly with increasing background masking, and neural latency change associated with acoustic processing most closely mirrored the changes in speech intelligibility. Finally, tracking responses related to semantic dissimilarity remained robust until severe speech masking (-3 dB SNR). The current study reveals that neural responses to acoustic features are highly sensitive to background masking and decreasing speech intelligibility, whereas neural responses to semantic features are relatively robust, suggesting that individuals track the meaning of the story well even in moderate background sound.
Hearing loss is associated with changes at the peripheral, subcortical, and cortical auditory stages.Research often focuses on these stages in isolation, but peripheral damage has cascading effects on central processing, and different stages are interconnected through extensive feedforward and feedback projections. Accordingly, assessment of the entire auditory system is needed to understand auditory pathology. Using a novel stimulus paired with electroencephalography in young, normalhearing adults, we assess neural function at multiple stages of the auditory pathway simultaneously.We employ click trains that repeatedly accelerate then decelerate (3.5 Hz frequency modulation; FM) introducing varying inter-click-intervals (4 to 40 ms). We measured the amplitude of cortical potentials, and the latencies and amplitudes of Waves III and V of the auditory brainstem response (ABR), to clicks as a function of preceding inter-click-interval. This allowed us to assess cortical processing of frequency modulation, as well as adaptation and neural recovery time in subcortical structures (probably cochlear nuclei and inferior colliculi). Subcortical adaptation to inter-click intervals was reflected in longer latencies. Cortical responses to the 3.5 Hz FM included phase-locking, probably originating from auditory cortex, and sustained activity likely originating from higher-level cortices. We did not observe any correlations between subcortical and cortical responses. By recording neural responses from different stages of the auditory system simultaneously, we can study functional relationships among levels of the auditory system, which may provide a new and helpful window on hearing and hearing impairment.
Optimal perception requires adaptation to sounds in the environment. Adaptation involves representing the acoustic stimulation history in neural response patterns, for example, by altering response magnitude or latency as sound-level context changes. Neurons in the auditory brainstem of rodents are sensitive to acoustic stimulation history and sound-level context (often referred to as sensitivity to stimulus statistics), but the degree to which the human brainstem exhibits such neural adaptation is unclear. In six electroencephalography experiments with over 125 participants, we demonstrate that the response latency of the human brainstem is sensitive to the history of acoustic stimulation over a few tens of milliseconds. We further show that human brainstem responses adapt to sound-level context in, at least, the last 44 ms, but that neural sensitivity to sound-level context decreases when the time window over which acoustic stimuli need to be integrated becomes wider. Our study thus provides evidence of adaptation to sound-level context in the human brainstem and of the timescale over which sound-level information affects neural responses to sound. The research delivers an important link to studies on neural adaptation in non-human animals.
Optimal perception requires adaptation to sounds in the environment. Adaptation involves representing the acoustic stimulation history in neural response patterns, for example, by altering response magnitude or latency as sound-level statistics change. Neurons in the auditory brainstem of rodents are sensitive to acoustic stimulation history and sound-level statistics, but the degree to which the human brainstem exhibits such neural adaptation is unclear. In six electroencephalography experiments with over 125 participants, we demonstrate that acoustic stimuli within a time window of at least 40 ms are represented in response latency of the human brainstem. We further show that human brainstem responses adapt to sound-level statistical information, but that neural sensitivity to sound-level statistics is less reliable when acoustic stimuli need to be integrated over periods of ~40 ms. Our results provide evidence of adaptation to sound-level statistics in the human brainstem and of the timescale over which sound-level statistics affect neural responses to sound. The research delivers an important link to studies on neural adaptation in non-human animals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.