In this paper we extend some results on the notions such as Expansive, Pseudo Orbit Tracing Property (P.O.T.P.), Chain Transitive, Periodic Shadowing, Chain Recurrent. We prove that if an expansive dynamical system (X,f) on compact uniform space has P.O.T.P., then it has periodic shadowing. If a continuous self map f on a compact uniform space has finite shadowing, then f has P.O.T.P. We find that a dynamical system (X,f) on compact uniform space has shadowing property if (X,f) has periodic shadowing provided f is expansive. If f is chain mixing on a compact uniform space (X,U), then fn is chain transitive for each n ≥ 1. If f has the periodic shadowing then fn has periodic shadowing for all n > 1. The periodic shadowing is invariant of topological conjugacy provided that the conjugacy and its inverse are Lipschitz.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.