Tuberization in potato ( Solanum tuberosum L.) is a developmental process that serves a double function, as a storage organ and as a vegetative propagation system. It is a multistep, complex process and the underlying mechanisms governing these overlapping steps are not fully understood. To understand the molecular basis of tuberization in potato, a comparative proteomic approach has been applied to monitor differentially expressed proteins at different development stages using two-dimensional gel electrophoresis (2-DE). The differentially displayed proteomes revealed 219 protein spots that change their intensities more than 2.5-fold. The LC-ES-MS/MS analyses led to the identification of 97 differentially regulated proteins that include predicted and novel tuber-specific proteins. Nonhierarchical clustering revealed coexpression patterns of functionally similar proteins. The expression of reactive oxygen species catabolizing enzymes, viz., superoxide dismutase, ascorbate peroxidase and catalase, were induced by more than 2-fold indicating their possible role during the developmental transition from stolons into tubers. We demonstrate that nearly 100 proteins, some presumably associated with tuber cell differentiation, regulate diverse functions like protein biogenesis and storage, bioenergy and metabolism, and cell defense and rescue impinge on the complexity of tuber development in potato.
Dehydration is the most crucial environmental constraint on plant growth and development, and agricultural productivity. To understand the underlying mechanism of stress tolerance, and to identify proteins for improving such important trait, we screened the dehydration-responsive proteome of chickpea and identified a tubby-like protein, referred to as CaTLP1. The CaTLP1 was found to predominantly bind to double-stranded DNA but incapable of transcriptional activation. We investigated the gene structure and organization and demonstrated, for the first time, that CaTLP1 may be involved in osmotic stress response in plants. The transcripts are strongly expressed in vegetative tissues but weakly in reproductive tissues. CaTLP1 is upregulated by dehydration and high salinity, and by treatment with abscisic acid (ABA), suggesting that its stress-responsive function might be associated with ABA-dependent network. Overexpression of CaTLP1 in transgenic tobacco plants conferred dehydration, salinity and oxidative stress tolerance along with improved shoot and root architecture. Molecular genetic analysis showed differential expression of CaTLP1 under normal and stress condition, and its preferential expression in the nucleus might be associated with enhanced stress tolerance. Our work suggests important roles of CaTLP1 in stress response as well as in the regulation of plant development.
The secretome of an organism is defined as a set of secreted proteins that encompasses all proteins exported to the extracellular space. To better understand the chickpea secretome, we used callus culture to isolate and identify secreted proteins as a step toward determining their functions. Proteins in the extracellular media of the suspension culture were examined using SDS-PAGE and mass spectrometry (LC-MS/MS). Proteomic analysis led to the identification of 773 proteins, presumably involved in a variety of functions including metabolism, signal transduction, transport, and cell defense, in addition to maintaining redox status of extracellular space. Bioinformatic analysis confirmed 724 proteins, accounting for 94% of the identified proteins, as constituents of the secretome. Analysis of the secretome revealed the presence of several proteins of unknown function and a large number of classical and nonclassical secreted proteins. This represents the first comprehensive secretome of a legume genome, which is yet to be sequenced. Comparative analysis of the chickpea secretome with those of Medicago, Arabidopsis, and rice revealed that the majority of identified proteins are seemingly species-specific. This study demonstrates that characterization of the chickpea secretome in vitro can be used to identify secreted proteins, which has implications for systems biology research.
Five halophilic bacterial isolates namely SS1, SS2, SS3, SS5 and SS8 were isolated from soil sediments of Lunsu, a salty water body. All the bacterial isolates showed growth in LB medium containing up to 8.7% NaCl, pH 7–8 and at temperature range of 30–37°C. The bacterial isolates
SS1 and SS3 require at least 3.8% NaCl for their growth, indicating their strict halophilic nature. Interestingly, bacterial isolates SS2, SS5 and SS8 but not SS1 and SS3 exhibited growth in medium supplemented with KCl. Accordingly, Na+ and K+ ions were detected at 1.39 and 0.0035%, respectively in Lunsu water. All the bacterial isolates were analyzed by random amplification of polymorphic DNA (RAPD) using four different random primers and produced PCR fragments ranging from 0.1 to 5 kb in size. Phylogenetic tree based on RAPD finger prints showed that SS1 and SS3 formed one group, while SS2 and SS5 formed the second group, whereas SS8 was out group. Sequence analysis of 16S rDNA identified SS1 and SS3 as Halobacillus trueperi, SS2 as Shewanella algae, SS5 as Halomonas venusta, and SS8 as Marinomonas sp. were deposited in GenBank with accession numbers of KM260166, KF751761, KF751760, KF751762 and KF751763, respectively. This is the first report on the presence of diverse halophilic bacteria in the foot hills of Himalayas.Electronic supplementary materialThe online version of this article (doi:10.1186/s40064-015-1028-1) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.