BackgroundMicroorganisms that are exposed to pollutants in the environment, such as metals/metalloids, have a remarkable ability to fight the metal stress by various mechanisms. These metal-microbe interactions have already found an important role in biotechnological applications. It is only recently that microorganisms have been explored as potential biofactories for synthesis of metal/metalloid nanoparticles. Biosynthesis of selenium (Se0) nanospheres in aerobic conditions by a bacterial strain isolated from the coalmine soil is reported in the present study.ResultsThe strain CM100B, identified as Bacillus cereus by morphological, biochemical and 16S rRNA gene sequencing [GenBank:GU551935.1] was studied for its ability to generate selenium nanoparticles (SNs) by transformation of toxic selenite (SeO32-) anions into red elemental selenium (Se0) under aerobic conditions. Also, the ability of the strain to tolerate high levels of toxic selenite ions was studied by challenging the microbe with different concentrations of sodium selenite (0.5 mM-10 mM). ESEM, AFM and SEM studies revealed the spherical Se0 nanospheres adhering to bacterial biomass as well as present as free particles. The TEM microscopy showed the accumulation of spherical nanostructures as intracellular and extracellular deposits. The deposits were identified as element selenium by EDX analysis. This is also indicated by the red coloration of the culture broth that starts within 2-3 h of exposure to selenite oxyions. Selenium nanoparticles (SNs) were further characterized by UV-Visible spectroscopy, TEM and zeta potential measurement. The size of nanospheres was in the range of 150-200 nm with high negative charge of -46.86 mV.ConclusionsThis bacterial isolate has the potential to be used as a bionanofactory for the synthesis of stable, nearly monodisperse Se0 nanoparticles as well as for detoxification of the toxic selenite anions in the environment. A hypothetical mechanism for the biogenesis of selenium nanoparticles (SNs) involving membrane associated reductase enzyme(s) that reduces selenite (SeO32-) to Se0 through electron shuttle enzymatic metal reduction process has been proposed.
SUMMARY1. The responses ofPurkinje cells to short duration (pulse) ionophoretic applications of L-aspartate (L-asp), L-glutamate (L-glu), N-methyl DL-aspartate (NMDLA) and quisqualic acid in their dendritic fields were studied in vitro on sagittal slices of lobules IX and X of the adult rat cerebellum.2. Pulse application of L-asp or L-glu evoked transient and dose-dependent increases in the firing rate of the simple spikes recorded extracellularly as single units. When the ionophoretic electrode was positioned in the dendritic field of the Purkinje cells, the lowest thresholds for L-glu and L-asp mediated excitations of the cells were as low as 25 and 35 pC respectively, with a latency for maximal responses as brief as 7 ms.3. In intracellular recordings these excitatory responses consisted ofdepolarizations of up to 18 mV in amplitude and with depolarizing slopes up to 0-52 mV/ms. They were generally unaccompanied by changes in cell input resistance in contrast to the marked decrease which occurred in response to steady applications of large doses of L-asp and L-glu.4. The spatial distribution of the excitatory sites confirmed that the dendritic sensitivity to L-glu was greater than that of the soma and showed that the same was true for L-asp. In 34 % of cells the sensitivity for L-asp declined markedly in the upper region of the molecular layer, whereas it remained high for L-glu; no such differential sensitivity was detected in the remaining 66 % of cells. F. CREPEL, S. S. DHANJAL AND T. A. SEARS greater and its action more prolonged. Furthermore, its steady application led to an abrupt and marked decrease in cell membrane resistance.8. The excitatory effects of L-asp, L-glu and quisqualic acid were antagonized by L-glutamic acid diethyl ester more consistently than by D-oz-aminoadipate, suggesting together with previous observations that L-asp and L-glu act on Purkinje cells via quisqualic acid rather than via NMDLA receptors.
The most commonly used 3′-splice site on the human papillomavirus type 16 (HPV-16) genome named SA3358 is used to produce HPV-16 early mRNAs encoding E4, E5, E6 and E7, and late mRNAs encoding L1 and L2. We have previously shown that SA3358 is suboptimal and is totally dependent on a downstream splicing enhancer containingmultiple potential ASF/SF2 binding sites. Here weshow that only one of the predicted ASF/SF2 sites accounts for the majority of the enhancer activity. We demonstrate that single nucleotide substitutions in this predicted ASF/SF2 site impair enhancer function and that this correlates with less efficient binding to ASF/SF2 in vitro. We provide evidence that HPV-16 mRNAs that arespliced to SA3358 interact with ASF/SF2 in living cells. In addition,mutational inactivation of the ASF/SF2 site weakened the enhancer at SA3358 in episomal forms of the HPV-16 genome, indicating that the enhancer is active in the context of the full HPV-16 genome.This resulted in induction of HPV-16 late gene expression as a result of competition from late splice site SA5639. Furthermore, inactivation of the ASF/SF2 site of the SA3358 splicing enhancer reduced the ability of E6- and E7-encoding HPV-16 plasmids to increase the life span of primary keratinocytes in vitro, demonstrating arequirement for an intact splicing enhancer of SA3358 forefficient production of the E6 and E7 mRNAs. These results link the strength of the HPV-16 SA3358 splicing enhancer to expression of E6 and E7 and to the pathogenic properties of HPV-16.
SUMMARY1. The morphological and electrophysiological characteristics of sagittal cerebellar slices of adult rat cerebellum maintained in vitro were studied.2. The ultrastructural preservation of the different neuronal cell types in many areas of these slices after 2-3 h incubation was very similar to that observed in material fixed in situ. A limited degree of glial swelling was observed in some regions.3. The conduction velocity of parallel fibres was within the normal in vivo range and the fibres retained their ability to activate Purkinje cells and inhibitory interneurones.4. Purkinje cells, recorded intrasomatically, responded to white matter stimulation with characteristic antidromic activation and climbing fibre responses, and typical parallel fibre responses were evoked following parallel fibre stimulation.5. Climbing fibre excitatory post-synaptic potentials (e.p.s.p.s) were very similar whether recorded in the dendrites or somata of Purkinje cells. By contrast, marked differences in the associated spike potentials were evident, the initial fast, low-threshold somatic spike appearing in the dendrites as a slow, high-threshold spike. The secondary spikes, both in the soma and dendrites, were of the latter type.6. The initial somatic spike was readily inactivated by cell depolarization but resisted moderate hyperpolarization, whereas the converse was true for the slow, high-threshold spikes recorded in the dendrites. These differences suggest that these responses are generated in the soma and in the dendrites respectively. 7. Climbing fibre and parallel fibre e.p.s.p.s recorded in Purkinje cell somata were reversed under depolarizing current injected through the recording micro-electrode. As in vivo, the parallel fibre e.p.s.p.s was more sensitive to injected current than the climbing fibre e.p.s.p. in several instances, despite the more proximal location of the synapses involved.
Background: HPV16 late gene expression is suppressed in mitotic cells. Results: hnRNP C proteins bind to the HPV16 early, untranslated region and activate HPV16 late mRNA splicing. Conclusion: hnRNP C proteins control HPV16 late gene expression. Significance: hnRNP C proteins may contribute to the ability of HPV16 to avoid the immune system and establish persistent infections that progress to cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.