Modern industrial agriculture is largely responsible for environmental problems, such as biodiversity loss, soil degradation, and alteration of biogeochemical cycles or greenhouse gas emission. Agroecology, as a scientific discipline as well as an agricultural practice and movement, emerged as a response to these problems, with the goal to create a more sustainable agriculture. Another response was the emergence of permaculture, a design system based on design principles, as well as a framework for the methods of ecosystem mimicry and complex system optimization. Its emphasis, being on a conscious design of agroecosystems, is the major difference to other alternative agricultural approaches. Agroecology has been a scientific discipline for a few decades already, but only recently have design principles for the reorganization of faming systems been formulated, whereas permaculture practitioners have long been using design principles without them ever being scrutinized. Here, we review the scientific literature to evaluate the scientific basis for the design principles proposed by permaculture co-originator, David Holmgren. Scientific evidence for all twelve principles will be presented. Even though permaculture principles describing the structure of favorable agroecosystems were quite similar to the agroecological approach, permaculture in addition provides principles to guide the design, implementation, and maintenance of resilient agroecological systems.
The term 'Permaculture' (PC) refers to a theory about diversified farming systems, based on an ethical attitude (worldview) and a practical design process, guided by 12 principles and flanked by a holistic sustainability concept. Invented in the wake of Australia's socio-political 'back-to-the-land' aspirations of the 1970s, PC has since developed and grown into a diverse international grassroot movement. It can be considered a rural as well as an urban socio-cultural phenomenon that revolves around non-commercial gardening, for example urban community projects, or around farming for self-sufficiency, for instance in eco-villages. This paper intends to investigate which aspects of PC may be scalable to commercial farming whilst identifying PC aspects already implemented in commercial (organic) agriculture (OA). It analyses a current business case led by a German wholesaler of organic produce who worked in cooperation with a German supermarket chain to create the first nationwide PC label. To this end, the paper describes the degree of overlap between two organic farming certification schemes and the case study. As opposed to certified OA, PC is less prescriptive, using a deductive and inductive approach instead. It may expand scope and flexibility required for farm redesign towards improved resilience, reaching out to the landscape level. The productiveness of PC in commercial settings needs to be established further, such as best practices in soil regeneration and monitoring as well as the reduction of soil losses, or the valuation of added ecosystem services such as promotion of (agro-)biodiversity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.