Nucleic acids are not only expected to assume a pivotal position as "drugs" in the treatment of genetic and acquired diseases, but could also act as molecular cues to control the microenvironment during tissue regeneration. Despite this promise, the efficient delivery of nucleic acids to their side of action is still the major hurdle. One among many prerequisites for a successful carrier system for nucleic acids is high stability in the extracellular environment, accompanied by an efficient release of the cargo in the intracellular compartment. A promising strategy to create such an interactive delivery system is to exploit the redox gradient between the extra- and intracellular compartments. In this review, emphasis is placed on the biological rationale for the synthesis of redox sensitive, disulfide-based carrier systems, as well as the extra- and intracellular processing of macromolecules containing disulfide bonds. Moreover, the basic synthetic approaches for introducing disulfide bonds into carrier molecules, together with examples that demonstrate the benefit of disulfides at the individual stages of nucleic acid delivery, will be presented.
The hydrophobicity of poorly soluble drugs can delay tablets disintegration. We probed here the influence of different disintegrants on the disintegration of challenging hydrophobic formulations. Tablets containing diluents, hydrogenated vegetable oil and either sodium starch glycolate (SSG), croscarmellose sodium (CCS) or crospovidone (XPVP) were prepared. The disintegration time of tablets was tested immediately and after storage at 40 C and 75% RH in sealed bags. Results show that storage and compression force had a negative effect on disintegration, particularly with 1% disintegrant. The performance of the three disintegrants was in the following order: CCS (best) > SSG > XPVP. For example, tablets containing 1% CCS, SSG and XPVP, compressed at 20 kN, disintegrated in z3, z12 and z69 min, respectively, after two months storage. Settling volume, liquid uptake and effect of storage on physical properties of the pure disintegrants were also studied and revealed that the reduced performance of XPVP is related to: 1) its rapid, yet short-range expansion upon liquid exposure and 2) its change of behaviour on storage. In conclusion, CCS ensured rapid disintegration at low concentration across various compression forces and storage times. Thus, the use of CCS in hydrophobic tablet formulations is recommended.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.