Microbial communities often undergo intricate compositional changes yet also maintain stable coexistence of diverse species. The mechanisms underlying long-term coexistence remain unclear as system-wide studies have been largely limited to engineered communities, ex situ adapted cultures, or synthetic assemblies. Here we show how kefir, a natural milk-fermenting community of prokaryotes (predominantly lactic and acetic acid bacteria) and yeasts (family Saccharomycetaceae), realizes stable coexistence through spatiotemporal orchestration of species and metabolite dynamics. During milk fermentation, kefir grains (a polysaccharide matrix synthesized by kefir microbes) grow in mass but remain unchanged in composition. In contrast, the milk is colonized in a sequential manner in which early members open the niche for the followers by making available metabolites like amino acids and lactate. Through metabolomics, transcriptomics and large-scale mapping of inter-species interactions, we show how microbes poorly suited for milk survive in — and even dominate — the community, through metabolic cooperation and uneven partitioning between grain and milk. Overall, our findings reveal how inter-species interactions partitioned in space and time lead to stable coexistence.
Bacteria in the gut can modulate the availability and efficacy of therapeutic drugs. Yet, the systematic mapping of the respective interactions has only started recently 1 and the main underlying mechanism proposed is chemical transformation of drugs by microbes (biotransformation). Here, we investigated the depletion of 15 structurally diverse drugs by 25 representative gut bacterial strains. This revealed 70 bacteria-drug interactions, 29 of which had not been reported before. Over half of the new interactions can be ascribed to bioaccumulation, that is bacteria storing the drug intracellularly without chemically modifying it, and in most cases without their growth being affected. As a case in point, we studied the molecular basis of bioaccumulation of the widely used antidepressant duloxetine by using clickchemistry, thermal proteome profiling and metabolomics. We find that duloxetine binds to several metabolic enzymes and changes metabolite secretion of the respective bacteria. When tested in a defined microbial community of accumulators and non-accumulators, duloxetine markedly altered the community composition through metabolic cross-feeding. We further validated our findings in an animal model, showing that bioaccumulating bacteria attenuate the behavioral response of Caenorhabditis elegans to duloxetine. Taken together, bioaccumulation by gut bacteria may be a common mechanism that alters drug availability and bacterial metabolism, with implications for microbiota composition, pharmacokinetics, side effects and drug responses, likely in an individual manner.Therapeutic drugs can have a strong impact on the gut microbiome and vice versa 2-5 . The underlying drug-bacteria interactions can reduce microbial fitness 6 or alter the drug availability through biotransformation 7-14 . The latter can have either a positive or a negative impact on drug activity and efficacy. While drugs like lovastatin and sulfasalazine are chemically transformed by gut bacteria into their active forms, bacterial metabolism can inactivate drugs such as digoxin 15,16 , or cause toxic effects as in the case of irinotecan 17 .Furthering the diversity of susceptible drugs, over one hundred molecules were recently reported to be chemically modified by gut bacteria 1 . Yet, the mechanistic view on these interactions is largely confined to drug biotransformation 12,13 . Drug accumulation without metabolizationTo expand the knowledge of bacterial effect on drug availability, we systematically profiled interactions between 15 human-targeted drugs and 25 representative human gut bacterial strains (21 species; with additional subspecies or conspecific strains of Bifidobacterium longum, Escherichia coli and Bacteroides uniformis) (Supplementary Table 1). The bacterial species were selected to cover a broad phylogenetic and metabolic diversity representative of the healthy microbiota 18 (Extended Data Fig. 1a, Supplementary Table 1). On the drug side, 12 orally administered small molecule drugs (MW<500 Da), amenable to UPLC-UV-based quantificat...
Microbial communities are composed of cells of varying metabolic capacity, and regularly include auxotrophs that lack essential metabolic pathways. Through analysis of auxotrophs for amino acid biosynthesis pathways in microbiome data derived from >12,000 natural microbial communities obtained as part of the Earth Microbiome Project (EMP), and study of auxotrophic–prototrophic interactions in self-establishing metabolically cooperating yeast communities (SeMeCos), we reveal a metabolically imprinted mechanism that links the presence of auxotrophs to an increase in metabolic interactions and gains in antimicrobial drug tolerance. As a consequence of the metabolic adaptations necessary to uptake specific metabolites, auxotrophs obtain altered metabolic flux distributions, export more metabolites and, in this way, enrich community environments in metabolites. Moreover, increased efflux activities reduce intracellular drug concentrations, allowing cells to grow in the presence of drug levels above minimal inhibitory concentrations. For example, we show that the antifungal action of azoles is greatly diminished in yeast cells that uptake metabolites from a metabolically enriched environment. Our results hence provide a mechanism that explains why cells are more robust to drug exposure when they interact metabolically.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.