BackgroundDuring the extremely challenging 4,487 km ultramarathon TransEurope-FootRace 2009, runners showed considerable reduction of body weight. The effects of this endurance run on brain volume changes but also possible formation of brain edema or new lesions were explored by repeated magnetic resonance imaging (MRI) studies.MethodsA total of 15 runners signed an informed consent to participate in this study of planned brain scans before, twice during, and about 8 months after the race. Because of dropouts, global gray matter volume analysis could only be performed in ten runners covering three timepoints, and in seven runners who also had a follow-up scan. Scanning was performed on three identical 1.5 T Siemens MAGNETOM Avanto scanners, two of them located at our university. The third MRI scanner with identical sequence parameters was a mobile MRI unit escorting the runners. Volumetric 3D datasets were acquired using a magnetization prepared rapid acquisition gradient echo (MPRAGE) sequence. Additionally, diffusion-weighted (DWI) and fluid attenuated inversion recovery (FLAIR) imaging was performed.ResultsAverage global gray matter volume as well as body weight significantly decreased by 6% during the race. After 8 months, gray matter volume returned to baseline as well as body weight. No new brain lesions were detected by DWI or FLAIR imaging.ConclusionsPhysiological brain volume reduction during aging is less than 0.2% per year. Therefore a volume reduction of about 6% during the 2 months of extreme running appears to be substantial. The reconstitution in global volume measures after 8 months shows the process to be reversible. As possible mechanisms we discuss loss of protein, hypercortisolism and hyponatremia to account for both substantiality and reversibility of gray matter volume reductions. Reversible brain volume reduction during an ultramarathon suggests that extreme running might serve as a model to investigate possible mechanisms of transient brain volume changes. However, despite massive metabolic load, we found no new lesions in trained athletes participating in a multistage ultramarathon.See related commentary http://www.biomedcentral.com/1741-7015/10/171
BackgroundDuring the 4,487 km ultra marathon TransEurope-FootRace 2009 (TEFR09), runners showed catabolism with considerable reduction of body weight as well as reversible brain volume reduction. We hypothesized that ultra marathon athletes might have developed changes to grey matter (GM) brain morphology due to the burden of extreme physical training. Using voxel-based morphometry (VBM) we undertook a cross sectional study and two longitudinal studies.MethodsPrior to the start of the race 13 runners volunteered to participate in this study of planned brain scans before, twice during, and 8 months after the race. A group of matched controls was recruited for comparison. Twelve runners were able to participate in the scan before the start of the race and were taken into account for comparison with control persons. Because of drop-outs during the race, VBM could be performed in 10 runners covering the first 3 time points, and in 7 runners who also had the follow-up scan after 8 months. Volumetric 3D datasets were acquired using an MPRAGE sequence. A level of p < 0.05, family-wise corrected for multiple comparisons was the a priori set statistical threshold to infer significant effects from VBM.ResultsBaseline comparison of TEFR09 participants and controls revealed no significant differences regarding GM brain volume. During the race however, VBM revealed GM volume decreases in regionally distributed brain regions. These included the bilateral posterior temporal and occipitoparietal cortices as well as the anterior cingulate and caudate nucleus. After eight months, GM normalized.ConclusionContrary to our hypothesis, we did not observe significant differences between TEFR09 athletes and controls at baseline. If this missing difference is not due to small sample size, extreme physical training obviously does not chronically alter GM.However, during the race GM volume decreased in brain regions normally associated with visuospatial and language tasks. The reduction of the energy intensive default mode network as a means to conserve energy during catabolism is discussed. The changes were reversible after 8 months.Despite substantial changes to brain composition during the catabolic stress of an ultra marathon, the observed differences seem to be reversible and adaptive.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.