The cellular uptake and subcellular localization of indocyanine green (ICG; absorption band 700-850 nm), and cell survival and ultrastructural changes following ICG-mediated phototherapy were investigated in vitro in four different cell lines derived from human skin (SCL1 and SCL2 squamous cell carcinoma, HaCaT keratinocytes and N1 fibroblasts). The cellular uptake of ICG (1-50 microM, incubation times 1, 4, 24 h) was saturable, highly cumulative and could be inhibited by the addition of 250 microM bromosulphophthalein indicating the involvement of the organic anion transporting polypeptide (OATP). For HaCaT cells, the maximum cellular uptake (Vmax) and the Michaelis constant (K(m)) were 9.9 +/- 1.1 mM and 47 +/- 16 microM, respectively, following a 24-h incubation with ICG. Fluorescence microscopy revealed a cytoplasmic distribution of ICG, probably bound to glutathione S-transferase. Following irradiation with a cw-diode laser (805 nm, 80 mW/cm2) at doses of 24 or 48 J/cm2, the phototoxicity was determined using the MTT assay as a measure of cell viability. For all cell lines, ICG concentrations above 25 microM produced a significant phototoxic effect. The EC50, of ICG for HaCaT cells following irradiation at 24 J/cm2 was 20.1 +/- 3.9 microM. Growth curves showed that even HaCaT cells treated at the EC50 were killed within a week following treatment. Electron microscopy 1 h after ICG-mediated phototherapy revealed cytoplasmic vesiculation, dilation of the rough endoplasmic reticulum, the Golgi complex and the perinuclear cisternae and the beginning of chromatin condensation in the nucleus. These ultrastructural findings are not consistent with a photothermal action of ICG-mediated phototherapy. Taken together with those of previous studies by our group these results support photooxidation as a major cell-killing mechanism.
5‐Aminolevulinic acid (ALA)–supported fluorescence endoscopy of the urinary bladder results in a detection rate of bladder cancer superior to that of white light endoscopy. The different accumulation of the metabolite protoporphyrin IX (PPIX) in tumor cells after ALA instillation is poorly understood; however, it is crucial to optimize diagnosis and potential phototherapy. For systematic analysis of cell‐type specific PPIX accumulation and metabolism two human bladder carcinoma cell lines (RT4 and J82), a normal urothelial cell line (UROtsa), and a fibroblast cell line (N1) were chosen, and grown in two different growth states to model important tissue components of the urinary bladder, i.e. tumor, normal epithelium and stroma. To quantitate PPIX content, fluorescence intensities measured by flow cytometry were matched with cellular PPIX extraction values, and related to relative ferrochelatase activity, cellular iron content, number of transferrin receptors per cell and porphobilinogen deaminase (PBGD) activity. For in vitro experiments, the initial correlation of relative flow cytometric and spectrometric measurements of PPIX provides a calibration curve for consequent flow cytometric PPIX quantification. Lower fluorescence of normal cells could be explained by significant differences of ferrochelatase activity and iron content in comparison to tumor cells. However, the content of iron was not related to transferrin receptor content. PBGD activity seemed to play a minor role for the differential accumulation of PPIX in urothelial cells. In conclusion, the in vitro culture of urothelial cells and fibroblasts indicates that the most important metabolic step for PPIX accumulation in the urinary bladder is the transition from PPIX to heme. Further investigation of PPIX metabolism does support the validation of photodynamic diagnosis, and might also lead the way to a highly specific tumor related molecule.
5-Aminolevulinic acid (ALA)-supported fluorescence endoscopy of the urinary bladder results in a detection rate of bladder cancer superior to that of white light endoscopy. The different accumulation of the metabolite protoporphyrin IX (PPIX) in tumor cells after ALA instillation is poorly understood; however, it is crucial to optimize diagnosis and potential phototherapy. For systematic analysis of cell-type specific PPIX accumulation and metabolism two human bladder carcinoma cell lines (RT4 and J82), a normal urothelial cell line (UROtsa), and a fibroblast cell line (N1) were chosen, and grown in two different growth states to model important tissue components of the urinary bladder, i.e. tumor, normal epithelium and stroma. To quantitate PPIX content, fluorescence intensities measured by flow cytometry were matched with cellular PPIX extraction values, and related to relative ferrochelatase activity, cellular iron content, number of transferrin receptors per cell and porphobilinogen deaminase (PBGD) activity. For in vitro experiments, the initial correlation of relative flow cytometric and spectrometric measurements of PPIX provides a calibration curve for consequent flow cytometric PPIX quantification. Lower fluorescence of normal cells could be explained by significant differences of ferrochelatase activity and iron content in comparison to tumor cells. However, the content of iron was not related to transferrin receptor content. PBGD activity seemed to play a minor role for the differential accumulation of PPIX in urothelial cells. In conclusion, the in vitro culture of urothelial cells and fibroblasts indicates that the most important metabolic step for PPIX accumulation in the urinary bladder is the transition from PPIX to heme. Further investigation of PPIX metabolism does support the validation of photodynamic diagnosis, and might also lead the way to a highly specific tumor related molecule.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.