Due to their significant biological activity, thiosemicarbazones (TSCs) are promising candidates for anticancer therapy. In part, the efficacy of TSCs is linked to their ability to chelate essential metal ions such as copper and iron. Triapine, the best-studied anticancer TSC, has been tested clinically with promising results in hematological diseases. During the last years, a novel subclass of TSCs with improved anticancer activity was found to induce paraptosis, a recently characterized form of cell death. The aim of this study was to identify structural and chemical properties associated with anticancer activity and paraptosis induction of TSCs.Results: When testing a panel of structurally related TSCs, compounds with nanomolar anticancer activity and paraptosis-inducing properties showed higher copper(II) complex solution stability and a slower reduction rate, which resulted in reduced redox activity. In contrast, TSCs with lower anticancer activity induced higher levels of superoxide that rapidly stimulated superoxide dismutase expression in treated cells, effectively protecting the cells from drug-induced redox stress.Innovation: Consequently, we hypothesize that in case of close Triapine derivatives, intracellular reduction leads to rapid dissociation of intracellularly formed copper complexes. In contrast, TSCs characterized by highly stable, slowly reducible copper(II) complexes are able to reach new intracellular targets such as the ER-resident protein disulfide isomerase.
Conclusions:The additional modes of actions observed with highly active TSC derivatives are based on intracellular formation of stable copper complexes, offering a new approach to combat (drug-resistant) cancer cells.
One of the most promising
classes of iron chelators are α-N-heterocyclic
thiosemicarbazones with Triapine as the most
prominent representative. In several clinical trials Triapine showed
anticancer activity against hematological diseases, however, studies
on solid tumors failed due to widely unknown reasons. Some years ago,
it was recognized that “terminal dimethylation” of thiosemicarbazones
can lead to a more than 100-fold increased activity, probably due
to interactions with cellular copper depots. To better understand
the structural requirements for the switch to nanomolar cytotoxicity,
we systematically synthesized all eight possible N-methylated derivatives of Triapine and investigated their potential
against Triapine-sensitive as well as -resistant cell lines. While
only the “completely” methylated compound exerted nanomolar
activity, the data revealed that all compounds with at least one N-dimethylation were not affected by acquired Triapine resistance.
In addition, these compounds were highly synergistic with copper treatment
accompanied by induction of reactive oxygen species and massive necrotic
cell death.
Due to their high biological activity, thiosemicarbazones have been developed for treatment of diverse diseases, including cancer, resulting in multiple clinical trials especially of the lead compound Triapine. During the last years, a novel subclass of anticancer thiosemicarbazones has attracted substantial interest based on their enhanced cytotoxic activity. Increasing evidence suggests that the double-dimethylated Triapine derivative Me2NNMe2 differs from Triapine not only in its efficacy but also in its mode of action. Here we show that Me2NNMe2- (but not Triapine)-treated cancer cells exhibit all hallmarks of paraptotic cell death including, besides the appearance of endoplasmic reticulum (ER)-derived vesicles, also mitochondrial swelling and caspase-independent cell death via the MAPK signaling pathway. Subsequently, we uncover that the copper complex of Me2NNMe2 (a supposed intracellular metabolite) inhibits the ER-resident protein disulfide isomerase, resulting in a specific form of ER stress based on disruption of the Ca2+ and ER thiol redox homeostasis. Our findings indicate that compounds like Me2NNMe2 are of interest especially for the treatment of apoptosis-resistant cancer and provide new insights into mechanisms underlying drug-induced paraptosis.
Chemotherapy with
platinum complexes is essential for clinical
anticancer therapy. However, due to side effects and drug resistance,
further drug improvement is urgently needed. Herein, we report on
triple-action platinum(IV) prodrugs, which, in addition to tumor targeting
via
maleimide-mediated albumin binding, release the immunomodulatory
ligand 1-methyl-
d
-tryptophan (1-MDT). Unexpectedly, structure–activity
relationship analysis showed that the mode of 1-MDT conjugation distinctly
impacts the reducibility and thus activation of the prodrugs. This
in turn affected ligand release, pharmacokinetic properties, efficiency
of immunomodulation, and the anticancer activity
in vitro
and in a mouse model
in vivo
. Moreover, we could
demonstrate that the design of albumin-targeted multi-modal prodrugs
using platinum(IV) is a promising strategy to enhance the cellular
uptake of bioactive ligands with low cell permeability (1-MDT) and
to improve their selective delivery into the malignant tissue. This
will allow tumor-specific anticancer therapy supported by a favorably
tuned immune microenvironment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.