The production of chirality with maximum economy is one of the most challenging tasks of today's pharmaceutical industry. Apart from the use of inherent chirality (starting material from the chiral pool, e.g., amino acid derivatives, carbohydrates), the creation of chiral centers via biocatalysis or asymmetric synthesis is commonly used. Another way to obtain pure enantiomers is the separation of racemates via kinetic resolution through preferred crystallization or preparative chromatography on chiral stationary phases. This paper emphasizes this last method, explains the possibilities of this technique, especially in its application form as simulated moving bed (SMB) chromatography, and shows its benefits and limitations. Therefore, comparisons to classical batch elution chromatographic processes as well as other unit operations (such as crystallization, etc.) must take cost calculations into account. In this paper, a theoretical comparison of optimized SMB and batch elution processes by simulation studies based on rigorous process models is presented for the separation of two different binary mixtures. These examples are chosen to demonstrate the different effects which dominate the applications in large-scale isomer separations and production-scale enantiomer separation. The first example is a fructose/glucose separation with linear isotherms. The model parameters are measured by Nicoud. The second characteristic example is an enantioseparation. The corresponding isotherms are of the modified Langmuir type. The performance of each separation process is quantified by three characteristic objective functions: productivity, dilution, and solvent requirement. Last, the specific separation costs or the total costs of separation are calculated as an objective function to lay emphasis on the economy of the separation, including product recovery and solvent recycling. The comparison of these objective functions, which are determined for batch and SMB processes, leads finally to certain rules of consideration to decide what kind of process (either batch elution or SMB) is preferable as a function of the physical properties of the given binary mixture and the separation task.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.