BackgroundIt has recently been shown that the lactation-induced inflammatory state in the liver of dairy cows is accompanied by activation of the nuclear factor E2-related factor 2 (Nrf2) pathway, which regulates the expression of antioxidant and cytoprotective genes and thereby protects tissues from inflammatory mediators and reactive oxygen species (ROS). The present study aimed to study whether the Nrf2 pathway is activated also in the liver of lactating sows.FindingsTranscript levels of known Nrf2 target genes, UGT1A1 (encoding glucuronosyltransferase 1 family, polypeptide A1), HO-1 (encoding heme oxygenase 1), NQO1 (encoding NAD(P)H dehydrogenase, quinone 1), GPX1 (encoding glutathione peroxidase), PRDX6 (encoding peroxiredoxin 6), TXNRD1 (encoding thioredoxin reductase 1), and SOD (encoding superoxide dismutase), in the liver are significantly elevated (between 1.7 and 3.1 fold) in lactating sows compared to non-lactating sows. The inflammatory state in the liver was evidenced by the finding that transcript levels of genes encoding acute phase proteins, namely haptoglobin (HP), fibrinogen γ (FGG), complement factor B (CFB), C-reactive protein (CRP) and lipopolysaccharide-binding protein (LBP), were significantly higher (2 to 8.7 fold) in lactating compared to non-lactating sows.ConclusionsThe results of the present study indicate that the Nrf2 pathway in the liver of sows is activated during lactation. The activation of Nrf2 pathway during lactation in sows might be interpreted as a physiologic means to counteract the inflammatory process and to protect the liver against damage induced by inflammatory signals and ROS.
Lactating sows have been shown to develop typical signs of an inflammatory condition in the liver during the transition from pregnancy to lactation. Hepatic inflammation is considered critical due to the induction of an acute phase response and the activation of stress signaling pathways like the endoplasmic reticulum (ER) stress-induced unfolded protein response (UPR), both of which impair animal´s health and performance. Whether ER stress-induced UPR is also activated in the liver of lactating sows and whether dietary fish oil as a source of anti-inflammatory effects n-3 PUFA is able to attenuate hepatic inflammation and ER stress-induced UPR in the liver of sows is currently unknown. Based on this, two experiments with lactating sows were performed. The first experiment revealed that ER stress-induced UPR occurs also in the liver of sows during lactation. This was evident from the up-regulation of a set of genes regulated by the UPR and numerically increased phosphorylation of the ER stress-transducer PERK and PERK-mediated phosphorylation of eIF2α and IκB. The second experiment showed that fish oil inhibits ER stress-induced UPR in the liver of lactating sows. This was demonstrated by decreased mRNA levels of a number of UPR-regulated genes and reduced phosphorylation of PERK and PERK-mediated phosphorylation of eIF2α and IκB in the liver of the fish oil group. The mRNA levels of various nuclear factor-κB-regulated genes encoding inflammatory mediators and acute phase proteins in the liver of lactating sows were also reduced in the fish oil group. In line with this, the plasma levels of acute phase proteins were reduced in the fish oil group, although differences to the control group were not significant. In conclusion, ER stress-induced UPR is present in the liver of lactating sows and fish oil is able to inhibit inflammatory signaling pathways and ER stress-induced UPR in the liver.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.