-Gypsum veins and faults were studied in red mudstones of the Upper Triassic Mercia Mudstone Group, in the Bristol Channel Basin, exposed in E-W-trending cliffs at Watchet on the Somerset Coast (SW England). In nodular gypsum horizons, individual gypsum nodules are connected by subhorizontal gypsum veins. In evaporite-free mudstone layers, however, dense anastomosing networks of gypsum veins occur. In a 300 m long profile dissected by 28 (mostly) normal faults with small displacements, 24 faults have veins following them, indicating palaeofluid transport along the fault planes. Ninety-seven cross-cutting relationships and mostly perpendicular vein fibres indicate that the veins are primarily extension fractures. The thickest veins in the vein network are subhorizontal (160 measurements), indicating a vertical orientation of the minimum principal compressive stress (horizontal basin compression). Such a stress state may have existed during basin inversion associated with Alpine compression (late Cretaceous to early Tertiary). I propose that the gypsum veins are the result of hydrofracturing. In the gypsum nodules, then presumably consisting of anhydrite, overpressure was generated related to the hydration of anhydrite to gypsum. Stress concentration around the nodules led to rupturing and injection of thin subhorizontal hydrofractures. Some of the calcium-sulphate saturated fluids were then transported upwards along the faults and gained access to evaporite-free mudstone layers where dense anastomosing vein networks developed. Most veins were arrested during their propagation by layers with contrasting mechanical properties (stress barriers). Some veins, however, propagated through the barriers along faults to shallower levels. The dense networks of mineral veins observed in Watchet indicate that hydrofractures can generate a very high temporary permeability in fluid reservoirs.
Fractures generated by internal fluid pressure, for example, dykes, mineral veins, many joints and man-made hydraulic fractures, are referred to as hydrofractures. Together with shear fractures, they contribute significantly to the permeability of fluid reservoirs such as those of petroleum, geothermal water, and groundwater. Analytical and numerical models show that-in homogeneous host rocks-any significant overpressure in hydrofractures theoretically generates very high crack tip tensile stresses. Consequently, overpressured hydrofractures should propagate and help to form interconnected fracture systems that would then contribute to the permeability of fluid reservoirs. Field observations, however, show that in heterogeneous and anisotropic, e.g., layered, rocks many hydrofractures become arrested or offset at layer contacts and do not form vertically interconnected networks. The most important factors that contribute to hydrofracture arrest are discontinuities (including contacts), stiffness changes between layers, and stress barriers, where the local stress field is unfavorable to hydrofracture propagation. A necessary condition for a hydrofracture to propagate to the surface is that the stress field along its potential path is everywhere favorable to extension-fracture formation so that the probability of hydrofracture arrest is minimized. Mechanical layering and the resulting heterogeneous stress field largely control whether evolving hydrofractures become confined to single layers (stratabound fractures) or not (non-stratabound fractures) and, therefore, if a vertically interconnected fracture system forms. Non-stratabound hydrofractures may propagate through many layers and generate interconnected fracture systems. Such systems commonly reach the percolation threshold and largely control the overall permeability of the fluid reservoirs within which they develop.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.