Chronic liver disease due to alcohol use disorder contributes markedly to the global burden of disease and mortality 1-3. Alcoholic hepatitis is a severe and life-threatening form of alcohol-Duan et al.
Non-alcoholic fatty liver DISEASE (NAFLD) is the most common chronic liver disease in Western countries and affects approximately 25% of the adult population. Since NAFLD is frequently associated with further metabolic comorbidities such as obesity, type 2 diabetes mellitus, or dyslipidemia, it is generally considered as the hepatic manifestation of the metabolic syndrome. In addition to its potential to cause liver-related morbidity and mortality, NAFLD is also associated with subclinical and clinical cardiovascular disease (CVD). Growing evidence indicates that patients with NAFLD are at substantial risk for the development of hypertension, coronary heart disease, cardiomyopathy, and cardiac arrhythmias, which clinically result in increased cardiovascular morbidity and mortality. The natural history of NAFLD is variable and the vast majority of patients will not progress from simple steatosis to fibrosis and end stage liver disease. However, patients with progressive forms of NAFLD, including non-alcoholic steatohepatitis (NASH) and/or advanced fibrosis, as well as NAFLD patients with concomitant types 2 diabetes are at highest risk for CVD. This review describes the underlying pathophysiological mechanisms linking NAFLD and CVD, discusses the role of NAFLD as a metabolic dysfunction associated cardiovascular risk factor, and focuses on common cardiovascular manifestations in NAFLD patients.
Chronic alcohol consumption causes increased intestinal permeability and changes in the intestinal microbiota composition, which contribute to the development and progression of alcohol‐related liver disease. In this setting, little is known about commensal fungi in the gut. We studied the intestinal mycobiota in a cohort of patients with alcoholic hepatitis, patients with alcohol use disorder, and nonalcoholic controls using fungal‐specific internal transcribed spacer amplicon sequencing of fecal samples. We further measured serum anti–Saccharomyces cerevisiae antibodies (ASCA) as a systemic immune response to fungal products or fungi. Candida was the most abundant genus in the fecal mycobiota of the two alcohol groups, whereas genus Penicillium dominated the mycobiome of nonalcoholic controls. We observed a lower diversity in the alcohol groups compared with controls. Antibiotic or steroid treatment was not associated with a lower diversity. Patients with alcoholic hepatitis had significantly higher ASCA levels compared to patients with alcohol use disorder and to nonalcoholic controls. Within the alcoholic hepatitis cohort, patients with levels of at least 34 IU/mL had a significantly lower 90‐day survival (59%) compared with those with ASCA levels less than 34 IU/mL (80%) with an adjusted hazard ratio of 3.13 (95% CI, 1.11‐8.82; P = 0.031). Conclusion: Patients with alcohol‐associated liver disease have a lower fungal diversity with an overgrowth of Candida compared with controls. Higher serum ASCA was associated with increased mortality in patients with alcoholic hepatitis. Intestinal fungi may serve as a therapeutic target to improve survival, and ASCA may be useful to predict the outcome in patients with alcoholic hepatitis.
The liver communicates with the intestine via the portal vein, biliary system, and mediators in the circulation. Microbes in the intestine maintain liver homeostasis but can also serve as a source of pathogens and molecules that contribute to fatty liver diseases. We review changes in the gut microbiota that can promote development or progression of alcohol-associated and non-alcoholic fatty liver disease-the most common chronic liver diseases in Western countries. We discuss how microbes and their products contribute to liver disease pathogenesis, putative microbial biomarkers of disease, and potential treatment approaches based on manipulation of the gut microbiota. Increasing our understanding of interactions between the intestinal microbiome and liver might help us identify patients with specific disease subtypes and select specific microbiota-based therapies. ll
Background & Aims: Alcohol-associated liver disease is a leading indication for liver transplantation and a leading cause of mortality. Alterations to the gut microbiota contribute to the pathogenesis of alcohol-associated liver disease. Patients with alcohol-associated liver disease have increased proportions of Candida spp. in the fecal mycobiome, yet little is known about the effect of intestinal Candida on the disease. Herein, we evaluated the contributions of Candida albicans and its exotoxin candidalysin in alcohol-associated liver disease. Methods: C. albicans and the extent of cell elongation 1 (ECE1) were analyzed in fecal samples from controls, patients with alcohol use disorder and those with alcoholic hepatitis. Mice colonized with different and genetically manipulated C. albicans strains were subjected to the chronic-plus-binge ethanol diet model. Primary hepatocytes were isolated and incubated with candidalysin.Results: The percentages of individuals carrying ECE1 were 0%, 4.76% and 30.77% in non-alcoholic controls, patients with alcohol use disorder and patients with alcoholic hepatitis, respectively. Candidalysin exacerbates ethanol-induced liver disease and is associated with increased mortality in mice. Candidalysin enhances ethanol-induced liver disease independently of the bglucan receptor C-type lectin domain family 7 member A (CLEC7A) on bone marrow-derived cells, and candidalysin does not alter gut barrier function. Candidalysin can damage primary hepatocytes in a dose-dependent manner in vitro and is associated with liver disease severity and mortality in patients with alcoholic hepatitis. Conclusions: Candidalysin is associated with the progression of ethanol-induced liver disease in preclinical models and worse clinical outcomes in patients with alcoholic hepatitis.Lay summary: Candidalysin is a peptide toxin secreted by the commensal gut fungus Candida albicans. Candidalysin enhances alcohol-associated liver disease independently of the b-glucan receptor CLEC7A on bone marrow-derived cells in mice without affecting intestinal permeability. Candidalysin is cytotoxic to primary hepatocytes, indicating a direct role of candidalysin on ethanol-induced liver disease. Candidalysin might be an effective target for therapy in patients with alcohol-associated liver disease.Published by Elsevier B.V. on behalf of European Association for the Study of the Liver.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.