By employing various high-resolution metrology techniques we directly probe the material composition profile within GaAs-Al0.3Ga0.7As core-shell nanowires grown by molecular beam epitaxy on silicon. Micro Raman measurements performed along the entire (>10 μm) length of the [111]-oriented nanowires reveal excellent average compositional homogeneity of the nominally Al0.3Ga0.7As shell. In strong contrast, along the radial direction cross-sectional scanning transmission electron microscopy and associated chemical analysis reveal rich structure in the AlGaAs alloy composition due to interface segregation, nanofaceting, and local alloy fluctuations. Most strikingly, we observe a 6-fold Al-rich substructure along the corners of the hexagonal AlGaAs shell where the Al-content is up to x ~ 0.6, a factor of 2 larger than the body of the AlGaAs shell. This is associated with facet-dependent capillarity diffusion due to the nonplanarity of shell growth. A modulation of the Al-content is also found along the radial [110] growth directions of the AlGaAs shell. Besides the ~10(3)-fold enhancement of the photoluminescence yield due to inhibition of nonradiative surface recombination, the AlGaAs shell gives rise to a broadened band of sharp-line luminescence features extending ~150-30 meV below the band gap of Al0.3Ga0.7As. These features are attributed to deep level defects under influence of the observed local alloy fluctuations in the shell.
Free-standing semiconductor nanowires in combination with advanced gate-architectures hold an exceptional promise as miniaturized building blocks in future integrated circuits. However, semiconductor nanowires are often corrupted by an increased number of close-by surface states, which are detrimental with respect to their optical and electronic properties. This conceptual challenge hampers their potentials in high-speed electronics and therefore new concepts are needed in order to enhance carrier mobilities. We have introduced a novel type of core-shell nanowire heterostructures that incorporate modulation or remote doping and hence may lead to high-mobility electrons. We demonstrate the validity of such concepts using inelastic light scattering to study single modulation-doped GaAs/Al0.16Ga0.84As core-multishell nanowires grown on silicon. We conclude from a detailed experimental study and theoretical analysis of the observed spin and charge density fluctuations that one- and two-dimensional electron channels are formed in a GaAs coaxial quantum well spatially separated from the donor ions. A total carrier density of about 3 × 10(7) cm(-1) and an electron mobility in the order of 50,000 cm(2)/(V s) are estimated. Spatial mappings of individual GaAs/Al0.16Ga0.84As core-multishell nanowires show inhomogeneous properties along the wires probably related to structural defects. The first demonstration of such unambiguous 1D- and 2D-electron channels and the respective charge carrier properties in these advanced nanowire-based quantum heterostructures is the basis for various novel nanoelectronic and photonic devices.
A unique growth scheme is demonstrated to realize ultrathin GaAs nanowires on Si with sizes down to the sub-10 nm regime. While this scheme preserves the bulk-like crystal properties, correlated optical experiments reveal huge blueshifted photo-luminescence (up to ≈100 meV) with decreasing nanowire cross-section, demonstrating very strong quantum confinement effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.