Abstract. Although increased aerosol concentration modifies local air temperatures and boundary layer structure in urban areas, little is known about its effects on the urban hydrological cycle. Changes in the hydrological cycle modify surface runoff and flooding. Furthermore, as runoff commonly transports pollutants to soil and water, any changes impact urban soil and aquatic environments. To explore the radiative effect of haze on changes in the urban surface water balance in Beijing, different haze levels are modelled using the Surface Urban Energy and Water Balance Scheme (SUEWS), forced by reanalysis data. The pollution levels are classified using aerosol optical depth observations. The secondary aims are to examine the usability of a global reanalysis dataset in a highly polluted environment and the SUEWS model performance. We show that the reanalysis data do not include the attenuating effect of haze on incoming solar radiation and develop a correction method. Using these corrected data, SUEWS simulates measured eddy covariance heat fluxes well. Both surface runoff and drainage increase with severe haze levels, particularly with low precipitation rates: runoff from 0.06 to 0.18 mm d−1 and drainage from 0.43 to 0.62 mm d−1 during fairly clean to extremely polluted conditions, respectively. Considering all precipitation events, runoff rates are higher during extremely polluted conditions than cleaner conditions, but as the cleanest conditions have high precipitation rates, they induce the largest runoff. Thus, the haze radiative effect is unlikely to modify flash flooding likelihood. However, flushing pollutants from surfaces may increase pollutant loads in urban water bodies.
Abstract. Atmospheric blocking can influence Arctic weather by diverting the mean westerly flow and steering cyclones polewards, bringing warm, moist air to high latitudes. Recent studies have shown that diabatic heating processes in the ascending warm conveyor belt branch of extratropical cyclones are relevant to blocking dynamics. This leads to the question of the extent to which diabatic heating associated with mid-latitude cyclones may influence high-latitude blocking and drive Arctic warm events. In this study we investigate the dynamics behind 50 extreme warm events of wintertime high-Arctic temperature anomalies during 1979–2016. Classifying the warm events based on blocking occurrence within three selected sectors, we find that 30 of these events are associated with a block over the Urals, featuring negative upper-level potential vorticity (PV) anomalies over central Siberia north of the Ural Mountains. Lagrangian back-trajectory calculations show that almost 60 % of the air parcels making up these negative PV anomalies experience lifting and diabatic heating (median 11 K) in the 6 d prior to the block. Further, almost 70 % of the heated trajectories undergo maximum heating in a compact region of the mid-latitude North Atlantic, temporally taking place between 6 and 1 d before arriving in the blocking region. We also find anomalously high cyclone activity (on average five cyclones within this 5 d heating window) within a sector northwest of the main heating domain. In addition, 10 of the 50 warm events are associated with blocking over Scandinavia. Around 60 % of the 6 d back trajectories started from these blocks experience diabatic heating, of which 60 % undergo maximum heating over the North Atlantic but generally closer to the time of arrival in the block and further upstream relative to heated trajectories associated with Ural blocking. This study suggests that, in addition to the ability of blocks to guide cyclones northwards, Atlantic cyclones play a significant role in the dynamics of high-latitude blocking by providing low-PV air via moist-diabatic processes. This emphasizes the importance of the mutual interactions between mid-latitude cyclones and Eurasian blocking for wintertime Arctic warm extremes.
<p><strong>Abstract.</strong> Although, air pollution modifies local air temperatures and boundary layer structure in urban areas, little is known about its effects on the urban hydrological cycle. To explore this, changes in the urban surface water balance during different haze levels are modelled in Beijing using the Surface Urban Energy and Water Balance Scheme (SUEWS), forced by reanalysis data. The pollution levels are classified using aerosol optical depth observations. We show how the reanalysis radiation data do not include the attenuating effect of haze and develop a haze correction for the incoming solar radiation. With this haze correction the SUEWS model simulates the eddy covariance measured latent heat flux well.</p> <p>Both surface runoff and drainage increase with severe haze levels particularly with low precipitation rates: runoff from 0.06 to 0.18&#8201;mm&#8201;day<sup>&#8722;1</sup> and drainage from 0.43 to 0.62&#8201;mm&#8201;day<sup>&#8722;1</sup> during fairly clean and extremely polluted conditions, respectively. When all precipitation events are taken into account, runoff is higher during the extremely polluted conditions than with cleaner conditions except during the cleanest conditions when the high precipitation rates induces largest runoff. Thus, haze is not likely impacting on the likelihood of flash floods. However, the low runoff rates commonly transport pollutants to soil and water and therefore their changes are important to understanding detailed deterioration of urban soil and aquatic environments.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.