The redox-active quinalphos main metabolite, 2-hydroxyquinoxaline, is particularly effective under excitation by light. We have studied the photocatalytic destruction of melatonin and its precursors, because the cytoprotective indoleamine has been detected in high quantities in mammalian skin. In photooxidation reactions, in which melatonin, N-acetylserotonin and serotonin are destroyed by 2-hydroxyquinoxaline, the photocatalyst is virtually not consumed. Rates of melatonin and serotonin destruction are not changed by the singlet oxygen quencher 1,4-diazabicyclo-(2,2,2)-octane, indicating that this oxygen species is not involved in the primary reactions, so that the persistence of 2-hydroxyquinoxaline has to be explained by redox cycling. This should imply formation of an organic radical, presumably the quinoxaline-2-oxyl radical, from which 2-hydroxyquinoxaline is regenerated by electron abstraction from indolic radical scavengers. Electron donation by 2-hydroxyquinoxaline is demonstrated by reduction of the 2,2'-azino-bis-(3-ethylbenzthiazolinyl-6-sulfonic acid) cation radical under ultrasound excitation. The compound 2-hydroxyquinoxaline interacts with the specific superoxide anion scavenger Tiron. Formation of oligomeric products from melatonin and serotonin is strongly inhibited by sodium dithionite. Products from photocatalytic indolamine conversion are predominantly dimers and oligomers. No kynuramines were detected in the case of serotonin oxidation, and melatonin's otherwise prevailing oxidation product N(1)-acetyl-N(2)-formyl-5-methoxykynuramine, another cytoprotective metabolite, is only formed in relatively small quantities. The proportion between products from melatonin is changed by 1,4-diazabicyclo-(2,2,2)-octane: singlet oxygen, also formed under the influence of excited 2-hydroxyquinoxaline, only affects secondary reactions.
ABSTRACT:The quinalphos metabolite 2-hydroxyquinoxaline (HQO), previously shown to photocatalytically destroy antioxidant vitamins and biogenic amines in vitro, was tested for toxicity in several small aquatic organisms and for mutagenicity in Salmonella typhimurium. In the rotifer Philodina acuticornis, HQO caused the disappearance of large individuals and increased hydroperoxide concentration. The latter effect was not only observed in animals kept in a light/dark cycle, but also in constant darkness, indicating that HQO can assume a reactive state and/or form reactive intermediates under the influence of either light or redox-active metabolites, in particular, free radicals. Cell proliferation was inhibited in the ciliate Paramecium bursaria. In the dinoflagellate Lingulodinium polyedrum, which allows early detection of cellular stress on the basis of bioluminescence measurements, strong rises in light emission became apparent on the 2nd day of exposure to HQO and continued until cells died between 12 and 18 days of treatment. Oxidative damage of protein by HQO was demonstrated by measuring protein carbonyl in L. polyedrum in vivo as well as in light-exposed bovine serum albumin in vitro. In an Ames test of mutagenicity, HQO proved to be genotoxic in both light-and dark-exposed bacteria. HQO appears as a source of secondary quinalphos toxicity, which deserves further attention. # 2007 Wiley Periodicals, Inc. Environ Toxicol 22: 33-43, 2007.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.