New DWI lesions occur more frequently after CAS than after CEA. However, technical advances mainly in the field of endovascular therapy potentially reduce the incidence of these adverse ischemic events. In this scenario, DWI appears to be an ideal tool to compare and further improve both techniques.
Background: In acute stroke patients, there is a need for noninvasive measurement to monitor blood flow-based therapies. We investigated the utility of near-infrared spectroscopy (NIRS) to determine cerebral perfusion in these patients. Methods: Eleven patients were investigated within 1.4 ± 2.2 days after onset of an ischemic middle cerebral artery infarction by monitoring the kinetics of an intravenous bolus of indocyanine green (ICG). For ICG kinetics, bolus peak time, time to peak (TTP = time between 0 and 100% ICG maximum), maximum ICG concentration, rise time (time between 10 and 90% ICG maximum), slope (maximum ICG/TTP), and blood flow index (BFI = maximum ICG/rise time) were obtained. Perfusion-weighted MRI (PWI) and NIRS measurements were performed within 24 h, and the interhemispherical differences of TTP values were compared. Results: Stroke patients showed an increased bolus peak time (p < 0.02), TTP (p < 0.01), and rise time (p < 0.01), whereas slope (p < 0.01) and BFI (p < 0.01) were diminished at the site of infarction as compared to the unaffected hemisphere. The interhemispherical differences of TTP as measured by PWI and NIRS were closely correlated (r = 0.86). Conclusions: Noninvasive measurements of cerebral ICG kinetics by NIRS provide a useful means of detecting cerebral perfusion deficits in patients with acute stroke, which correlate well with those obtained by PWI.
The findings support the assumption that new brain lesions, as detected with DWI after CAS or CEA, do not affect cognitive performance in a manner that is long-lasting or clinically relevant. Despite the higher embolic load detected by DWI, CAS is not associated with a greater cognitive decline than CEA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.