As a novel stimulus, we use high-frequency ultrasonic waves to provide the required energy for breaking hydrogen bonds between Poly(N-isopropylacrylamide) (PNIPAM) and water molecules while the solution temperature is maintained below the volume phase transition temperature (VPTT = 32 °C). Ultrasonic waves propagate through the solution and their energy will be absorbed due to the liquid viscosity. The absorbed energy partially leads to the generation of a streaming flow and the rest will be spent to break the hydrogen bonds. Therefore, the microgels collapse and become insoluble in water and agglomerate, resulting in solution turbidity. We use turbidity to quantify the ultrasound energy absorption and show that the acousto-response of PNIPAM microgels is a temporal phenomenon that depends on the duration of the actuation. Increasing the solution concentration leads to a faster turbidity evolution. Furthermore, an increase in ultrasound frequency leads to an increase in the breakage of more hydrogen bonds within a certain time and thus faster turbidity evolution. This is due to the increase in ultrasound energy absorption by liquids at higher frequencies.
Capacitive micromachined ultrasonic transducers (CMUTs) represent an accepted technology for ultrasonic transducers, while high bias voltage requirements and limited output pressure still need to be addressed. In this paper, we present a design for ultra-low-voltage operation with enhanced output pressure. Low voltages allow for good integrability and mobile applications, whereas higher output pressures improve the penetration depth and signal-to-noise ratio. The CMUT introduced has an ultra-thin gap (120 nm), small plate thickness (800 nm), and is supported by a non-flexural piston, stiffening the topside for improved average displacement, and thus higher output pressure. Three designs for low MHz operation are simulated and fabricated for comparison: bare plate, plate with small piston (34% plate coverage), and big piston (57%). The impact of the piston on the plate mechanics in terms of resonance and pull-in voltage are simulated with finite element method (FEM). Simulations are in good agreement with laser Doppler vibrometer and LCR-meter measurements. Further, the sound pressure output is characterized in immersion with a hydrophone. Pull-in voltages range from only 7.4 V to 25.0 V. Measurements in immersion with a pulse at 80% of the pull-in voltage present surface output pressures from 44.7 kPa to 502.1 kPa at 3.3 MHz to 4.2 MHz with a fractional bandwidth of up to 135%. This leads to an improvement in transmit sensitivity in pulsed (non-harmonic) driving from 7.8 kPa/V up to 24.8 kPa/V.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.