Cycling of gene expression in individual cells is controlled by dynamic chromatin remodeling.
Transforming growth factor 1 (TGF1) is a pleiotropic cytokine with potent neurotrophic and immunosuppressive properties that is upregulated after injury, but also expressed in the normal nervous system. In the current study, we examined the regulation of TGF1 and the effects of TGF1 deletion on cellular response in the uninjured adult brain and in the injured and regenerating facial motor nucleus. To avoid lethal autoimmune inflammation within 3 weeks after birth in TGF1-deficient mice, this study was performed on a T-and B-cell-deficient RAG2Ϫ/Ϫ background. Compared with wild-type siblings, homozygous deletion of TGF1 resulted in an extensive inflammatory response in otherwise uninjured brain parenchyma. Astrocytes increased in GFAP and CD44 immunoreactivity; microglia showed proliferative activity, expression of phagocytosis-associated markers [␣X2, B7.2, and MHC1 (major histocompatibility complex type 1)], and reduced branching. Ultrastructural analysis revealed focal blockade of axonal transport, perinodal damming of axonal organelles, focal demyelination, and myelin debris in granule-rich, phagocytic microglia. After facial axotomy, absence of TGF1 led to a fourfold increase in neuronal cell death (52 vs 13%), decreased central axonal sprouting, and significant delay in functional recovery. It also interfered with the microglial response, resulting in a diminished expression of early activation markers [ICAM1 (intercellular adhesion molecule 1), ␣61, and ␣M2] and reduced proliferation. In line with axonal and glial findings in the otherwise uninjured CNS, absence of endogenous TGF1 also caused an ϳ10% reduction in the number of normal motoneurons, pointing to an ongoing and potent trophic role of this anti-inflammatory cytokine in the normal as well as in the injured brain.
We have generated a humanized double-reporter transgenic rat for whole-body in vivo imaging of endocrine gene expression, using the human prolactin (PRL) gene locus as a physiologically important endocrine model system. The approach combines the advantages of bacterial artificial chromosome recombineering to report appropriate regulation of gene expression by distant elements, with double reporter activity for the study of highly dynamic promoter regulation in vivo and ex vivo. We show first that this rat transgenic model allows quantitative in vivo imaging of gene expression in the pituitary gland, allowing the study of pulsatile dynamic activity of the PRL promoter in normal endocrine cells in different physiological states. Using the dual reporters in combination, dramatic and unexpected changes in PRL expression were observed after inflammatory challenge. Expression of PRL was shown by RT-PCR to be driven by activation of the alternative upstream extrapituitary promoter and flow cytometry analysis pointed at diverse immune cells expressing the reporter gene. These studies demonstrate the effective use of this type of model for molecular physiology and illustrate the potential for providing novel insight into human gene expression using a heterologous system.
Thyroid hormones are essential for a variety of developmental and metabolic processes. Congenital hypothyroidism (CHT) results in severe defects in the development of different tissues, in particular brain. As an animal model for CHT, we studied Pax8(-/-) mice, which are born without a thyroid gland. We determined the expression of iodothyronine deiodinase D1 in liver and kidney, D2 in brain and pituitary, and D3 in brain, as well as serum T(4), T(3), and rT(3) levels in Pax8(-/-) vs. control mice during the first 3 wk of life. In control mice, serum T(4) and T(3) were undetectable on the day of birth (d 0) and increased to maximum levels on d 15. In Pax8(-/-) mice, serum T(4) and T(3) remained below detection limits. Serum rT(3) was high on d 0 in both groups and rapidly decreased in Pax8(-/-), but not in control mice. Hepatic and renal D1 activities and mRNA levels were low on d 0 and increased in control mice roughly parallel to serum T(4) and T(3) levels. In Pax8(-/-) mice, tissue D1 activities and mRNA levels remained low. Cerebral D2 activities were low on d 0 and increased to maximum levels on d 15, which were approximately 10-fold higher in Pax8(-/-) than in control mice. D2 mRNA levels were higher in Pax8(-/-) than in control mice only on d 21. Cerebral D3 activities and mRNA levels were high on d 0 and showed a moderate decrease between d 3 and 15, with values slightly lower in Pax8(-/-) than in control mice. One day after the injection of 200 ng T(4) or 20 ng T(3)/g body weight, tissue deiodinase activities and mRNA levels were at least partially restored toward control levels, with the exception of cerebral D3 activity. In conclusion, these findings show dramatic age and thyroid state-dependent changes in the expression of deiodinases in central and peripheral tissues of mice during the first 3 wk of life.
SummaryGene expression in living cells is highly dynamic, but temporal patterns of gene expression in intact tissues are largely unknown. The mammalian pituitary gland comprises several intermingled cell types, organised as interdigitated networks that interact functionally to generate co-ordinated hormone secretion. Live-cell imaging was used to quantify patterns of reporter gene expression in dispersed lactotrophic cells or intact pituitary tissue from bacterial artificial chromosome (BAC) transgenic rats in which a large prolactin genomic fragment directed expression of luciferase or destabilised enhanced green fluorescent protein (d2EGFP). Prolactin promoter activity in transgenic pituitaries varied with time across different regions of the gland. Although amplitude of transcriptional responses differed, all regions of the gland displayed similar overall patterns of reporter gene expression over a 50-hour period, implying overall coordination of cellular behaviour. By contrast, enzymatically dispersed pituitary cell cultures showed unsynchronised fluctuations of promoter activity amongst different cells, suggesting that transcriptional patterns were constrained by tissue architecture. Short-term, high resolution, single cell analyses in prolactin-d2EGFP transgenic pituitary slice preparations showed varying transcriptional patterns with little correlation between adjacent cells. Together, these data suggest that pituitary tissue comprises a series of cell ensembles, which individually display a variety of patterns of short-term stochastic behaviour, but together yield long-range and long-term coordinated behaviour.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.