This study determined whether retinal degeneration during diabetes includes retinal neural cell apoptosis. Image analysis of retinal sections from streptozotocin (STZ) diabetic rats after 7.5 months of STZ diabetes identified 22% and 14% reductions in the thickness of the inner plexiform and inner nuclear layers, respectively ( P Ͻ 0.001). The number of surviving ganglion cells was also reduced by 10% compared to controls ( P Ͻ 0.001). In situ end labeling of DNA terminal dUTP nick end labeling (TUNEL) identified a 10-fold increase in the frequency of retinal apoptosis in wholemounted rat retinas after 1, 3, 6, and 12 months of diabetes ( P Ͻ 0.001, P Ͻ 0.001, P Ͻ 0.01, and P Ͻ 0.01, respectively).
Blood-retinal barrier (BRB) breakdown is a hallmark of diabetic retinopathy, but the molecular changes that cause this pathology are unclear. Occludin is a transmembrane component of interendothelial tight junctions that may regulate permeability at the BRB. In this study, we examined the effects of vascular endothelial growth factor (VEGF) and diabetes on vascular occludin content and barrier function. Sprague-Dawley rats were made diabetic by intravenous streptozotocin injection, and age-matched animals served as controls. After 3 months, BRB permeability was quantified by intravenous injection of fluorescein isothiocyanate-bovine serum albumin (FITC-BSA), Mr 66 kDa, and 10-kDa rhodamine-dextran (R-D), followed by digital image analysis of retinal sections. Retinal fluorescence intensity for FITC-BSA increased 62% (P < or = 0.05), but R-D fluorescence did not change significantly. Occludin localization at interendothelial junctions was confirmed by immunofluorescence, and relative protein content was determined by immunoblotting of retinal homogenates. Retinal occludin content decreased approximately 35% (P < or = 0.03) in the diabetic versus the control animals, whereas the glucose transporter GLUT1 content was unchanged in rat retinas. Additionally, treatment of bovine retinal endothelial cells in culture with 0.12 nmol/l or 12 nmol/l VEGF for 6 h reduced occludin content 46 and 54%, respectively. These data show that diabetes selectively reduces retinal occludin protein expression and increases BRB permeability. Our findings suggest that the elevated VEGF in the vitreous of patients with diabetic retinopathy increases vascular permeability by downregulating occludin content. Decreased tight junction protein expression may be an important means by which diabetes causes increased vascular permeability and contributes to macular edema.
Topoisomerase I (Top1) is a proven target for cancer therapeutics, and the level of Top1 in tumors has been used as a biomarker for chemotherapeutic efficacy. In this study, we report the development and validation of a two-site enzyme chemiluminescent immunoassay for Top1, which we used to measure Top1 levels in the NCI-60 cancer cell line panel. Top1 levels ranged from 0.9 to 9.8 ng/mL/μg protein extract in these cell lines. Levels varied both within and between cancer types but were generally highest in colon cancer and leukemia cell lines and lowest in central nervous system and renal cancer cell lines. Top1 mRNA levels in the NCI-60 cell lines were also measured by microarray; mRNA values generally showed a good correlation with protein levels (Pearson correlation = 0.8). When these expression levels were compared with the activity of the indenoisoquinoline class of Top1 inhibitors across the NCI-60 cell panel, low levels of Top1 were associated with increased resistance to these drugs. The results of our studies indicate that our Top1 assay can be used to quantify Top1 levels in untreated cells as well as cells treated with Top1 inhibitors and that the assay has the potential to be adapted for use in predicting clinical response to Top1-active antineoplastic agents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.