Summary Induction of haem oxygenase-1 (HO-1) as well as nitric oxide (NO) biosynthesis during tumour growth was investigated in an experimental solid tumour model (AH136B hepatoma) in rats. An immunohistochemical study showed that the inducible isoform of NO synthase (iNOS) was localized in monocyte-derived macrophages, which infiltrated interstitial spaces of solid tumour, but not in the tumour cells. Excessive production of NO in the tumour tissue was unequivocally verified by electron spin resonance spectroscopy. Tumour growth was moderately suppressed by treatment with either N ω -nitro-L-arginine methyl ester (L-NAME) or S-methylisothiourea sulphate (SMT). In contrast, HO-1 was found only in tumour cells, not in macrophages, by in situ hybridization for HO-1 mRNA. HO-1 expression in AH136B cells in culture was strongly enhanced by an NO (NO + ) donor S-nitroso-N-acetyl penicillamine. HO-1 mRNA expression in the solid tumour in vivo decreased significantly after treatment with low doses of NOS inhibitors such as L-NAME and SMT (6-20 mg kg -1 ). However, the level of HO-1 mRNA in the solid tumour treated with higher doses of NOS inhibitor was similar to that of the solid tumour without NOS inhibitor treatment. Strong induction of HO-1 was also observed in solid tumours after occlusion or embolization of the tumour-feeding artery, indicating that ischaemic stress which may involve oxidative stress triggers HO-1 induction in the solid tumour. Lastly, it is of great importance that an HO inhibitor, zinc protoporphyrin IX injected intra-arterially to the solid tumour suppressed the tumour growth to a great extent. In conclusion, HO-1 expression in the solid tumour may confer resistance of tumour cells to hypoxic stress as well as to NO-mediated cytotoxicity.
Induction of haem oxygenase-1 (HO-1) may provide an important protective effect for cells against oxidative stress. Here, we investigated the mechanism of cytoprotection of HO-1 in solid tumour with a focus on the antiapoptotic activity of HO-1. Treatment of rat hepatoma AH136B cells with the HO inhibitor zinc protoporphyrin IX (ZnPP IX) or tin protoporphyrin IX resulted in extensive apoptotic changes of tumour cells both in vivo and in vitro. Caspase-3 activity of the ZnPP IX-treated hepatoma cells increased significantly. Moreover, ZnPP IX-induced apoptosis was completely inhibited by simultaneous incubation with a specific caspase-3 inhibitor and was partially abrogated by bilirubin, a reaction product of HO. In vivo ZnPP IX treatment did not affect nitric oxide (NO) production and tumour blood flow. Western blot analyses showed that HO-1 expression in AH136B cells was strongly upregulated by NO donors, for example, S-nitroso-N-acetyl penicillamine and propylamine NONOate in vitro; conversely, it was remarkably reduced in vivo by pharmacological blockade of NOS. We conclude that HO-1 may function in antiapoptotic defense of the tumour, and thus it may have important protective and beneficial effects for tumour cells against oxidative stress induced by NO, which is produced in excess during solid tumour growth in vivo.
Heme oxygenase (HO) is a key enzyme in heme metabolism; it oxidatively degrades heme to biliverdin, accompanied by formation of free iron and carbon monoxide. Biliverdin is subsequently reduced by cytosolic biliverdin reductase to form bilirubin, a potent antioxidant. We recently found that tumor cells utilize HO to protect themselves from oxidative stress by producing the antioxidant bilirubin. This result suggested an important potential therapeutic strategy: suppression of bilirubin production with the use of HO inhibitors; hence, cancer cells become vulnerable to oxidative stress induced by anticancer drugs or leukocytes of the host. This concept was validated by using the intraarterial administration of an HO inhibitor, zinc protoporphyrin, in nonphysiological solution. In the present study, zinc protoporphyrin (ZnPP) was conjugated with poly(ethylene glycol) (PEG) with molecular weight of 5000, to make ZnPP, a water-soluble compound (PEG-ZnPP), and to improve its tumor-targeting efficiency. PEG was conjugated to ZnPP through newly introduced amino groups, where ethylenediamine residues were added at C6 and C7 of protoporphyrin. The divalent zinc cation was chelated into the protoporphyrin ring to obtain PEG-ZnPP. PEG-ZnPP did become highly water-soluble, and it formed multimolecular associations with molecules larger than 70 kDa in aqueous media. PEG-ZnPP inhibited splenic microsomal HO activity in vitro in a competitive manner in the presence of hemin, with an apparent inhibitory constant of 0.12 microM. Most important, PEG-ZnPP injected intravenously significantly suppressed intratumor HO activity in a murine solid tumor model, which suggests that tumor-targeted inhibition of HO is possible with the use of PEG-ZnPP.
The association between rs35705950 and IPF was also present in this Japanese cohort, but was not as strong as the German counterpart. To our knowledge, this is the first study to successfully validate the association between rs35705950 and IPF in a Japanese ethnicity.
Even in the German cohort, the serum KL6 levels were significantly higher in patients with ILDs than HS. Because of differences in the genotype distribution of rs4072037, the KL-6 cutoff value for the German cohort that discriminated patients with ILDs from HS was significantly higher than the value in the Japanese cohort.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.