Findings on MRI remain key in guiding the diagnosis of pituitary stalk lesions, particularly when used in conjunction with other clinical clues. There are no good imaging predictors for hypopituitarism, making clinical evaluation of all patients with pituitary stalk lesions crucial.
It is critical to identify biomarkers and functional networks associated with aggressive thyroid cancer to anticipate disease progression and facilitate personalized patient management. We performed miRNome sequencing of 46 thyroid tumors enriched with advanced disease patients with a median follow‐up of 96 months. MiRNome profiles correlated with tumor‐specific histopathological and molecular features, such as stromal cell infiltration and tumor driver mutation. Differential expression analysis revealed a consistent hsa‐miR‐139‐5p downexpression in primary carcinomas from patients with recurrent/metastatic disease compared to disease‐free patients, sustained in paired local metastases and validated in publicly available thyroid cancer series. Exogenous expression of hsa‐miR‐139‐5p significantly reduced migration and proliferation of anaplastic thyroid cancer cells. Proteomic analysis indicated RICTOR, SMAD2/3 and HNRNPF as putative hsa‐miR‐139‐5p targets in our cell system. Abundance of HNRNPF mRNA, encoding an alternative splicing factor involved in cryptic exon inclusion/exclusion, inversely correlated with hsa‐miR‐139‐5p expression in human tumors. RNA sequencing analysis revealed 174 splicing events differentially regulated upon HNRNPF repression in our cell system, affecting genes involved in RTK/RAS/MAPK and PI3K/AKT/MTOR signaling cascades among others. These results point at the hsa‐miR‐139‐5p/HNRNPF axis as a novel regulatory mechanism associated with the modulation of major thyroid cancer signaling pathways and tumor virulence.
Genetic diagnosis is recommended for all pheochromocytoma and paraganglioma (PPGL) cases, as driver mutations are identified in approximately 80% of the cases. As the list of related genes expands, genetic diagnosis becomes more time-consuming, and targeted next-generation sequencing (NGS) has emerged as a cost-effective tool. This study aimed to optimize targeted NGS in PPGL genetic diagnostics. A workflow based on two customized targeted NGS assays was validated to study the 18 main PPGL genes in germline and frozen tumor DNA, with one of them specifically directed toward formalin-fixed paraffin-embedded tissue. The series involved 453 unrelated PPGL patients, of whom 30 had known mutations and were used as controls. Partial screening using Sanger had been performed in 275 patients. NGS results were complemented with the study of gross deletions. NGS assay showed a sensitivity ≥99.4%, regardless of DNA source. We identified 45 variants of unknown significance and 89 pathogenic mutations, the latter being germline in 29 (7.2%) and somatic in 58 (31.7%) of the 183 tumors studied. In 37 patients previously studied by Sanger sequencing, the causal mutation could be identified. We demonstrated that both assays are an efficient and accurate alternative to conventional sequencing. Their application facilitates the study of minor PPGL genes, and enables genetic diagnoses in patients with incongruent or missing clinical data, who would otherwise be missed.
Summary The aim of this study was to investigate the effect of risedronate (RIS) on bone loss and bone turnover markers after liver transplantation (LT). Patients with osteopenia or osteoporosis within the first month after LT were randomized to receive RIS 35 mg/week plus calcium 1000 mg/day and vitamin D3 800 IU/day (n = 45) or calcium and vitamin D3 at same dosages (n = 44). Primary endpoint was change in bone mineral density (BMD) 6 and 12 months after LT. Secondary endpoints included changes in serum β‐CrossLaps (β‐CTX) and procollagen type 1 amino‐terminal peptide (P1NP) and fracture rate. Spine X‐rays were obtained at baseline and after 12 months. There was no significant difference in BMD changes between both treatment groups at any sites; either at 6 or 12 months. Spine BMD increased in both groups at 12 months vs. baseline (P = 0.001). RIS patients had a significant increase in intertrochanteric BMD at 12 months (P < 0.05 vs. baseline). Serum β‐CTX decreased in both groups (P < 0.01), with significant differences between groups at 3 months. No significant difference in vertebral fracture incidence was found. After 12 months, BMD improved at lumbar spine and did not change at hip in both groups. Significant differences between both groups were not found. Other factors (calcium and vitamin D replacement, early prednisone withdrawal) seem to have also positive effects in BMD.
Background Comprehensive molecular studies on tumours are needed to delineate immortalization process steps and identify sensitive prognostic biomarkers in thyroid cancer. Methods and Results In this study, we extensively characterize telomere‐related alterations in a series of 106 thyroid tumours with heterogeneous clinical outcomes. Using a custom‐designed RNA‐seq panel, we identified five telomerase holoenzyme‐complex genes upregulated in clinically aggressive tumours compared to tumours from long‐term disease‐free patients, being TERT and TERC denoted as independent prognostic markers by multivariate regression model analysis. Characterization of alterations related to TERT re‐expression revealed that promoter mutations, methylation and/or copy gains exclusively co‐occurred in clinically aggressive tumours. Quantitative‐FISH (fluorescence in situ hybridization) analysis of telomere lengths showed a significant shortening in these carcinomas, which matched with a high proliferative rate measured by Ki‐67 immunohistochemistry. RNA‐seq data analysis indicated that short‐telomere tumours exhibit an increased transcriptional activity in the 5‐Mb‐subtelomeric regions, site of several telomerase‐complex genes. Gene upregulation enrichment was significant for specific chromosome‐ends such as the 5p, where TERT is located. Co‐FISH analysis of 5p‐end and TERT loci showed a more relaxed chromatin configuration in short telomere‐length tumours compared to normal telomere‐length tumours. Conclusions Overall, our findings support that telomere shortening leads to a 5p subtelomeric region reorganization, facilitating the transcription and accumulation of alterations at TERT‐locus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.