The involvement of cellular oxidative stress in antibacterial therapy has remained a topical issue over the years. In this study, the contribution of oxidative stress to astaxanthin-mediated bacterial lethality was evaluated in silico and in vitro. For the in vitro analysis, the minimum inhibitory concentration (MIC) of astaxanthin was lower than that of novobiocin against Staphylococcus aureus but generally higher than those of the reference antibiotics against other test organisms. The level of superoxide anion of the tested organisms increased significantly following treatment with astaxanthin when compared with DMSO-treated cells. This increase compared favorably with those observed with the reference antibiotics and was consistent with a decrease in the concentration of glutathione (GSH) and corresponding significant increase in ADP/ATP ratio. These observations are suggestive of probable involvement of oxidative stress in antibacterial capability of astaxanthin and in agreement with the results of the in silico evaluations, where the free energy scores of astaxanthins’ complexes with topoisomerase IV ParC and ParE were higher than those of the reference antibiotics. These observations were consistent with the structural stability and compactness of the complexes as astaxanthin was observed to be more stable against topoisomerase IV ParC and ParE than DNA Gyrase A and B. Put together, findings from this study underscored the nature and mechanism of antibacterial action of astaxanthin that could suggest practical approaches in enhancing our current knowledge of antibacterial arsenal and aid in the novel development of alternative natural topo2A inhibitor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.