BackgroundThe binary similarity and dissimilarity measures have critical roles in the processing of data consisting of binary vectors in various fields including bioinformatics and chemometrics. These metrics express the similarity and dissimilarity values between two binary vectors in terms of the positive matches, absence mismatches or negative matches. To our knowledge, there is no published work presenting a systematic way of finding an appropriate equation to measure binary similarity that performs well for certain data type or application. A proper method to select a suitable binary similarity or dissimilarity measure is needed to obtain better classification results.ResultsIn this study, we proposed a novel approach to select binary similarity and dissimilarity measures. We collected 79 binary similarity and dissimilarity equations by extensive literature search and implemented those equations as an R package called bmeasures. We applied these metrics to quantify the similarity and dissimilarity between herbal medicine formulas belonging to the Indonesian Jamu and Japanese Kampo separately. We assessed the capability of binary equations to classify herbal medicine pairs into match and mismatch efficacies based on their similarity or dissimilarity coefficients using the Receiver Operating Characteristic (ROC) curve analysis. According to the area under the ROC curve results, we found Indonesian Jamu and Japanese Kampo datasets obtained different ranking of binary similarity and dissimilarity measures. Out of all the equations, the Forbes-2 similarity and the Variant of Correlation similarity measures are recommended for studying the relationship between Jamu formulas and Kampo formulas, respectively.ConclusionsThe selection of binary similarity and dissimilarity measures for multivariate analysis is data dependent. The proposed method can be used to find the most suitable binary similarity and dissimilarity equation wisely for a particular data. Our finding suggests that all four types of matching quantities in the Operational Taxonomic Unit (OTU) table are important to calculate the similarity and dissimilarity coefficients between herbal medicine formulas. Also, the binary similarity and dissimilarity measures that include the negative match quantity d achieve better capability to separate herbal medicine pairs compared to equations that exclude d.Electronic supplementary materialThe online version of this article (doi:10.1186/s12859-016-1392-z) contains supplementary material, which is available to authorized users.
Indonesia has the largest medicinal plant species in the world and these plants are used as Jamu medicines. Jamu medicines are popular traditional medicines from Indonesia and we need to systemize the formulation of Jamu and develop basic scientific principles of Jamu to meet the requirement of Indonesian Healthcare System. We propose a new approach to predict the relation between plant and disease using network analysis and supervised clustering. At the preliminary step, we assigned 3138 Jamu formulas to 116 diseases of International Classification of Diseases (ver. 10) which belong to 18 classes of disease from National Center for Biotechnology Information. The correlation measures between Jamu pairs were determined based on their ingredient similarity. Networks are constructed and analyzed by selecting highly correlated Jamu pairs. Clusters were then generated by using the network clustering algorithm DPClusO. By using matching score of a cluster, the dominant disease and high frequency plant associated to the cluster are determined. The plant to disease relations predicted by our method were evaluated in the context of previously published results and were found to produce around 90% successful predictions.
In order to obtain a better understanding why some Jamu formulas can be used to treat a specific disease, we performed metabolomic studies of Jamu by taking into consideration the biologically active compounds existing in plants used as Jamu ingredients. A thorough integration of information from omics is expected to provide solid evidence-based scientific rationales for the development of modern phytomedicines. This study focused on prediction of Jamu efficacy based on its component metabolites and also identification of important metabolites related to each efficacy group. Initially, we compared the performance of Support Vector Machines and Random Forest to predict the Jamu efficacy with three different data pre-processing approaches, such as no filtering, Single Filtering algorithm, and a combination of Single Filtering algorithm and feature selection using Regularized Random Forest. Both classifiers performed very well and according to 5-fold cross-validation results, the mean accuracy of Support Vector Machine with linear kernel was slightly better than Random Forest. It can be concluded that machine learning methods can successfully relate Jamu efficacy with metabolites. In addition, we extended our analysis by identifying important metabolites from the Random Forest model. The inTrees framework was used to extract the rules and to select important metabolites for each efficacy group. Overall, we identified 94 significant metabolites associated to 12 efficacy groups and many of them were validated by published literature and KNApSAcK Metabolite Activity database.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.