An assessment of elastase-substrate kinetics and adsorption at the solid-liquid interface of peptide-bound resin was made in an approach to the solid-phase detection of human neutrophil elastase (HNE), which is found in high concentration in chronic wound fluid. N-succinyl-alanine-alanine-proline-valine-p-nitroanilide (suc-Ala-Ala-Pro-Val-pNA), a chromogenic HNE substrate, was attached to glycine-cross-linked ethoxylate acrylate resins (Gly-CLEAR) by a carbodiimide reaction. To assess the enzyme-substrate reaction in a two-phase system, the kinetic profile of resin-bound peptide substrate hydrolysis by HNE was obtained. A glycine and di-glycine spacer was placed between the resin polymer and substrate to assess the steric and spatial requirements of resin to substrate with enzyme hydrolysis. The enzymatic activities of suc-Ala-Ala-Pro-Val-pNA and suc-Ala-Ala-Pro-Ala-pNA on the solid-phase resin were compared with similar analogs in solution. An increase in visible wavelength absorbance was observed with increasing amounts of substrate-resin and enzyme concentration. Enzyme hydrolysis of the resin-bound substrate was also demonstrated on a polypropylene surface, which was employed for visible absorbance of released chromophore. A soluble active substrate analog was released from the resin through saponification of the ethoxylate ester linkages in the resin polymer. The resin-released conjugate of the HNE substrate demonstrated an increased dose response with increasing enzyme concentration. The synthesis and assay of elastase substrates bound to CLEAR resin gives an understanding of substrate-elastase adsorption and activity at the resin's solid-liquid interface for HNE detection with a solid-phase peptide.
The design, preparation, and application of both immobilized enzymes and enzyme substrates on cotton fibers for biomedical and specialty applications, includes antibacterial fabrics, decontamination wipes, debridement and chronic wound dressing prototypes, and protease detection devices. The molecular design steps of enzyme and enzyme substrate cellulose conjugates is presented.Molecular models of lysozyme-and orgaonphosphorous hydrolase-cellulose conjugates are given as examples of assessing the utility of the biorationally designed fabrics. The chemistry of immobilzing the enzyme or enzyme substrate to the cotton fabric of choice, employs use of crosslinking agents for either aqueous or organic coupling reactions.Assays for assessment bioconjugate activity is pivotal to optimizing the development of the immobilized enzyme or substrate as a product.U.S.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.