SUMMARYMaintaining the homeostasis of germinal zones in adult organs is a fundamental but mechanistically poorly understood process. In particular, what controls stem cell activation remains unclear. We have previously shown that Notch signaling limits neural stem cell (NSC) proliferation in the adult zebrafish pallium. Combining pharmacological and genetic manipulations, we demonstrate here that long-term Notch invalidation primarily induces NSC amplification through their activation from quiescence and increased occurrence of symmetric divisions. Expression analyses, morpholino-mediated invalidation and the generation of a notch3-null mutant directly implicate Notch3 in these effects. By contrast, abrogation of notch1b function results in the generation of neurons at the expense of the activated NSC state. Together, our results support a differential involvement of Notch receptors along the successive steps of NSC recruitment. They implicate Notch3 at the top of this hierarchy to gate NSC activation and amplification, protecting the homeostasis of adult NSC reservoirs under physiological conditions.
Little is known on the embryonic origin and related heterogeneity of adult neural stem cells (aNSCs). We use conditional genetic tracing, activated in a global or mosaic fashion by cell type-specific promoters or focal laser uncaging, coupled with gene expression analyses and Notch invalidations, to address this issue in the zebrafish adult telencephalon. We report that the germinal zone of the adult pallium originates from two distinct subtypes of embryonic progenitors and integrates two modes of aNSC formation. Dorsomedial aNSCs derive from the amplification of actively neurogenic radial glia of the embryonic telencephalon. On the contrary, the lateral aNSC population is formed by stepwise addition at the pallial edge from a discrete neuroepithelial progenitor pool of the posterior telencephalic roof, activated at postembryonic stages and persisting lifelong. This dual origin of the pallial germinal zone allows the temporally organized building of pallial territories as a patchwork of juxtaposed compartments.
Urotensin II (UII) is an evolutionarily conserved neuropeptide initially isolated from teleost fish on the basis of its smooth muscle-contracting activity. Subsequent studies have demonstrated the occurrence of several UII-related peptides (URPs), such that the UII family is now known to include four paralogue genes called UII, URP, URP1 and URP2. These genes probably arose through the two rounds of whole genome duplication that occurred during early vertebrate evolution. URP has been identified both in tetrapods and teleosts. In contrast, URP1 and URP2 have only been observed in ray-finned and cartilaginous fishes, suggesting that both genes were lost in the tetrapod lineage. In the present study, the distribution of urp1 mRNA compared to urp2 mRNA is reported in the central nervous system of zebrafish. In the spinal cord, urp1 and urp2 mRNAs were mainly colocalized in the same cells. These cells were also shown to be GABAergic and express the gene encoding the polycystic kidney disease 2-like 1 (pkd2l1) channel, indicating that they likely correspond to cerebrospinal fluid-contacting neurons. In the hindbrain, urp1-expressing cells were found in the intermediate reticular formation and the glossopharyngeal-vagal motor nerve nuclei. We also showed that synthetic URP1 and URP2 were able to induce intracellular calcium mobilization in human UII receptor (hUT)-transfected CHO cells with similar potencies (pEC50=7.99 and 7.52, respectively) albeit at slightly lower potencies than human UII and mammalian URP (pEC50=9.44 and 8.61, respectively). The functional redundancy of URP1 and URP2 as well as the colocalization of their mRNAs in the spinal cord suggest the robustness of this peptidic system and its physiological importance in zebrafish.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.