During T cell development, thymocytes which are tolerant to self-peptides but reactive to foreign peptides are selected. The current model for thymocyte selection proposes that self-peptide–major histocompatibility complex (MHC) complexes that bind the T cell receptor with low affinity will promote positive selection while those with high affinity will result in negative selection. Upon thymocyte maturation, such low affinity self-peptide–MHC ligands no longer provoke a response, but foreign peptides can incidentally be high affinity ligands and can therefore stimulate T cells. For this model to work, thymocytes must be more sensitive to ligand than mature T cells. Contrary to this expectation, several groups have shown that thymocytes are less responsive than mature T cells to anti-T cell receptor for antigen (TCR)/CD3 mAb stimulation. Additionally, the lower TCR levels on thymocytes, compared with T cells, would potentially correlate with decreased thymocyte sensitivity. Here we compared preselection thymocytes and mature T cells for early activation events in response to peptide–MHC ligands. Remarkably, the preselection thymocytes were more responsive than mature T cells when stimulated with low affinity peptide variants, while both populations responded equally well to the antigenic peptide. This directly demonstrates the increased sensitivity of thymocytes compared with T cells for TCR engagement by peptide–MHC complexes.
The mechanism by which TCR antagonists interfere with T cell activation is unclear. One popular hypothesis is that incomplete early signaling events induced by these ligands dominantly inhibit the T cell’s ability to respond to a copresented agonist ligand. Here we test this “dominant negative” signal hypothesis by studying T cells expressing two distinct MHC class I-restricted TCRs (2C and OT-I). Although responses through each TCR can be efficiently inhibited by their specific antagonists, we found no evidence for “cross-antagonism” in which an antagonist for receptor “A” blocks responses through receptor “B.” Such inhibition would have been expected were the dominant negative signaling hypothesis correct, and alternative models for TCR antagonism are discussed.
The transcription factor lung Krüppel-like factor (LKLF) is involved in naive T cell survival. Expression of LKLF is rapidly down-regulated upon T cell stimulation, raising the question of whether LKLF is reexpressed after activation, and what factors are required for such reexpression. Furthermore, the expression of LKLF in resting memory cells has not been determined. Here, we use the OT-I TCR transgenic mouse system to address these issues. LKLF was found to be reexpressed following culture of activated CD8 T cells in certain cytokines (IL-2, IL-7) but not others (IL-12) known to influence CTL development. Interestingly, induction of LKLF reexpression corresponded with long-term T cell survival and development of memory T cell phenotype. Furthermore, using OT-I cells stimulated in vivo, we demonstrated that Ag induced rapid LKLF down-regulation and that the factor is expressed by in vivo-derived memory T cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.